{"title":"利用同态评估阈值确保类似患者查询安全","authors":"Mounika Pratapa, Aleksander Essex","doi":"10.1016/j.jisa.2024.103861","DOIUrl":null,"url":null,"abstract":"<div><p>Patient-centric precision medicine requires the analysis of large volumes of genomic data to tailor treatments and medications based on individual-level characteristics. Because the amount of data held by a single institution is limited, researchers may want access to genomic data held by other institutions. Owing to the inherent privacy implications of genomic data, performing comparisons on <em>encrypted</em> data is preferable in certain settings. The <em>Similar patient query</em> (SPQ) is an application that enables a secure search across genomic databases for patients with similar genetic makeup. Query results can be used to draw meaningful conclusions regarding suitable therapies.</p><p>However, existing protocols either reveal intermediate computations, such as similarity scores, which can lead to membership-inference attacks, or they realize the ideal Boolean output (similar/not similar) through <em>multiple</em> protocol rounds, requiring the database owners to stay online throughout.</p><p>This paper introduces a two-party privacy-preserving approach to perform SPQs across encrypted genomic databases based on secure function extensions of additively homomorphic encryption. In contrast to related works, our scheme enables secure computation of genomic data similarity without an external party in a single round. This is achieved for more than 1000 positions of a genome in a single public key operation of 256-bit security level in the integer factorization setting.</p></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"85 ","pages":"Article 103861"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214212624001637/pdfft?md5=03b251bf5e21af75bddaf15bffd0b4fd&pid=1-s2.0-S2214212624001637-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Secure similar patients query with homomorphically evaluated thresholds\",\"authors\":\"Mounika Pratapa, Aleksander Essex\",\"doi\":\"10.1016/j.jisa.2024.103861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Patient-centric precision medicine requires the analysis of large volumes of genomic data to tailor treatments and medications based on individual-level characteristics. Because the amount of data held by a single institution is limited, researchers may want access to genomic data held by other institutions. Owing to the inherent privacy implications of genomic data, performing comparisons on <em>encrypted</em> data is preferable in certain settings. The <em>Similar patient query</em> (SPQ) is an application that enables a secure search across genomic databases for patients with similar genetic makeup. Query results can be used to draw meaningful conclusions regarding suitable therapies.</p><p>However, existing protocols either reveal intermediate computations, such as similarity scores, which can lead to membership-inference attacks, or they realize the ideal Boolean output (similar/not similar) through <em>multiple</em> protocol rounds, requiring the database owners to stay online throughout.</p><p>This paper introduces a two-party privacy-preserving approach to perform SPQs across encrypted genomic databases based on secure function extensions of additively homomorphic encryption. In contrast to related works, our scheme enables secure computation of genomic data similarity without an external party in a single round. This is achieved for more than 1000 positions of a genome in a single public key operation of 256-bit security level in the integer factorization setting.</p></div>\",\"PeriodicalId\":48638,\"journal\":{\"name\":\"Journal of Information Security and Applications\",\"volume\":\"85 \",\"pages\":\"Article 103861\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214212624001637/pdfft?md5=03b251bf5e21af75bddaf15bffd0b4fd&pid=1-s2.0-S2214212624001637-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Security and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214212624001637\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212624001637","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Secure similar patients query with homomorphically evaluated thresholds
Patient-centric precision medicine requires the analysis of large volumes of genomic data to tailor treatments and medications based on individual-level characteristics. Because the amount of data held by a single institution is limited, researchers may want access to genomic data held by other institutions. Owing to the inherent privacy implications of genomic data, performing comparisons on encrypted data is preferable in certain settings. The Similar patient query (SPQ) is an application that enables a secure search across genomic databases for patients with similar genetic makeup. Query results can be used to draw meaningful conclusions regarding suitable therapies.
However, existing protocols either reveal intermediate computations, such as similarity scores, which can lead to membership-inference attacks, or they realize the ideal Boolean output (similar/not similar) through multiple protocol rounds, requiring the database owners to stay online throughout.
This paper introduces a two-party privacy-preserving approach to perform SPQs across encrypted genomic databases based on secure function extensions of additively homomorphic encryption. In contrast to related works, our scheme enables secure computation of genomic data similarity without an external party in a single round. This is achieved for more than 1000 positions of a genome in a single public key operation of 256-bit security level in the integer factorization setting.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.