Mohammad Bizhanimanzar, Gabriel Rondeau-Genesse, Louis-Philippe Caron, Denis Lefaivre, Edouard Mailhot
{"title":"当前和海平面上升条件下圣劳伦斯河沿岸极端水位和河水流量的共同发生情况","authors":"Mohammad Bizhanimanzar, Gabriel Rondeau-Genesse, Louis-Philippe Caron, Denis Lefaivre, Edouard Mailhot","doi":"10.1029/2023EF004027","DOIUrl":null,"url":null,"abstract":"<p>In low-lying coastal regions, the joint occurrence of high river flow and high water levels can cause coastal flooding with substantial economic and social implications. Recent studies over Canada's coasts have shown that neglecting the interdependency between flood drivers can underestimate the risk of flooding by up to 50%. However, to date, such interdependency has not been investigated for the coasts of the St. Lawrence River, Estuary and Gulf system (StL), where Sea Level Rise (SLR), along with intensified river peaks, are already threatening these communities. In this study, a copula-based bivariate frequency analysis was applied to quantify the likelihood of occurrence of flooding events under dependent and independent assumptions, for 26 sites along the StL. Furthermore, to quantify the impact of anthropogenic climate change, the joint return period in historical period was compared with that of projected SLR associated with RCP 8.5 for the year 2100. Results show that (a) the independence assumption can underestimate the likelihood of occurrence of flooding event in the Fluvial Section of the StL by up to 30 times and (b) the SLR can increase the likelihood of occurrence of flooding event by up to 50 times in the Estuary and the Gulf and by up to 5 times in the Fluvial Section of the StL. This study highlights the need for explicit consideration of the dependence between flood drivers and of SLR in the delineation of flood maps along the coast of the St. Lawrence.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF004027","citationCount":"0","resultStr":"{\"title\":\"Joint Occurrence of Extreme Water Level and River Flows in St. Lawrence River Coasts Under Present and Sea Level Rise Conditions\",\"authors\":\"Mohammad Bizhanimanzar, Gabriel Rondeau-Genesse, Louis-Philippe Caron, Denis Lefaivre, Edouard Mailhot\",\"doi\":\"10.1029/2023EF004027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In low-lying coastal regions, the joint occurrence of high river flow and high water levels can cause coastal flooding with substantial economic and social implications. Recent studies over Canada's coasts have shown that neglecting the interdependency between flood drivers can underestimate the risk of flooding by up to 50%. However, to date, such interdependency has not been investigated for the coasts of the St. Lawrence River, Estuary and Gulf system (StL), where Sea Level Rise (SLR), along with intensified river peaks, are already threatening these communities. In this study, a copula-based bivariate frequency analysis was applied to quantify the likelihood of occurrence of flooding events under dependent and independent assumptions, for 26 sites along the StL. Furthermore, to quantify the impact of anthropogenic climate change, the joint return period in historical period was compared with that of projected SLR associated with RCP 8.5 for the year 2100. Results show that (a) the independence assumption can underestimate the likelihood of occurrence of flooding event in the Fluvial Section of the StL by up to 30 times and (b) the SLR can increase the likelihood of occurrence of flooding event by up to 50 times in the Estuary and the Gulf and by up to 5 times in the Fluvial Section of the StL. This study highlights the need for explicit consideration of the dependence between flood drivers and of SLR in the delineation of flood maps along the coast of the St. Lawrence.</p>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF004027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023EF004027\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EF004027","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Joint Occurrence of Extreme Water Level and River Flows in St. Lawrence River Coasts Under Present and Sea Level Rise Conditions
In low-lying coastal regions, the joint occurrence of high river flow and high water levels can cause coastal flooding with substantial economic and social implications. Recent studies over Canada's coasts have shown that neglecting the interdependency between flood drivers can underestimate the risk of flooding by up to 50%. However, to date, such interdependency has not been investigated for the coasts of the St. Lawrence River, Estuary and Gulf system (StL), where Sea Level Rise (SLR), along with intensified river peaks, are already threatening these communities. In this study, a copula-based bivariate frequency analysis was applied to quantify the likelihood of occurrence of flooding events under dependent and independent assumptions, for 26 sites along the StL. Furthermore, to quantify the impact of anthropogenic climate change, the joint return period in historical period was compared with that of projected SLR associated with RCP 8.5 for the year 2100. Results show that (a) the independence assumption can underestimate the likelihood of occurrence of flooding event in the Fluvial Section of the StL by up to 30 times and (b) the SLR can increase the likelihood of occurrence of flooding event by up to 50 times in the Estuary and the Gulf and by up to 5 times in the Fluvial Section of the StL. This study highlights the need for explicit consideration of the dependence between flood drivers and of SLR in the delineation of flood maps along the coast of the St. Lawrence.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.