DCDroid:基于奈维贝叶斯分类器和双中心分析的 APK 静态识别方法

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Information Security Pub Date : 2024-08-19 DOI:10.1049/2024/6652217
Lansheng Han, Peng Chen, Wei Liao
{"title":"DCDroid:基于奈维贝叶斯分类器和双中心分析的 APK 静态识别方法","authors":"Lansheng Han,&nbsp;Peng Chen,&nbsp;Wei Liao","doi":"10.1049/2024/6652217","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The static scanning identification of android application packages (APK) has been widely proven to be an effective and scalable method. However, the existing identification methods either collect feature values from known APKs for inefficient comparative analysis, or use expensive program syntax or semantic analysis methods to extract features. Therefore, this paper proposes an APK static identification method that is different from traditional graph analysis. We match application programming interface (API) call graph to a complex network, and use a dual-centrality analysis method to calculate the importance of sensitive nodes in the API call graph, while integrating the global and relative influence of sensitive nodes. Our key insight is that the dual-centrality analysis method can more accurately characterize the graph semantic information of Android malicious APKs. We created and named a method <i>DCDroid</i> and evaluated it on a dataset of 4,428 benign samples and 4,626 malicious samples. The experimental results show that compared to the four advanced methods <i>Drebin</i>, <i>MaMaDroid</i>, <i>MalScan</i>, and <i>HomeDroid</i>, <i>DCDroid</i> can identify Android malicious APKs with an accuracy of 97.5%, with an F1 value of 96.7% and is two times faster than <i>HomeDroid</i>, eight times faster than <i>Drebin</i>, and 17 times faster than <i>MaMaDroid</i>. We grabbed 10,000 APKs from the Google Play Market, <i>DCDroid</i> was able to find 68 malicious APKs, of which 67 were confirmed Android malicious APKs, with a good ability to identify market-level malicious APKs.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2024 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6652217","citationCount":"0","resultStr":"{\"title\":\"DCDroid: An APK Static Identification Method Based on Naïve Bayes Classifier and Dual-Centrality Analysis\",\"authors\":\"Lansheng Han,&nbsp;Peng Chen,&nbsp;Wei Liao\",\"doi\":\"10.1049/2024/6652217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The static scanning identification of android application packages (APK) has been widely proven to be an effective and scalable method. However, the existing identification methods either collect feature values from known APKs for inefficient comparative analysis, or use expensive program syntax or semantic analysis methods to extract features. Therefore, this paper proposes an APK static identification method that is different from traditional graph analysis. We match application programming interface (API) call graph to a complex network, and use a dual-centrality analysis method to calculate the importance of sensitive nodes in the API call graph, while integrating the global and relative influence of sensitive nodes. Our key insight is that the dual-centrality analysis method can more accurately characterize the graph semantic information of Android malicious APKs. We created and named a method <i>DCDroid</i> and evaluated it on a dataset of 4,428 benign samples and 4,626 malicious samples. The experimental results show that compared to the four advanced methods <i>Drebin</i>, <i>MaMaDroid</i>, <i>MalScan</i>, and <i>HomeDroid</i>, <i>DCDroid</i> can identify Android malicious APKs with an accuracy of 97.5%, with an F1 value of 96.7% and is two times faster than <i>HomeDroid</i>, eight times faster than <i>Drebin</i>, and 17 times faster than <i>MaMaDroid</i>. We grabbed 10,000 APKs from the Google Play Market, <i>DCDroid</i> was able to find 68 malicious APKs, of which 67 were confirmed Android malicious APKs, with a good ability to identify market-level malicious APKs.</p>\\n </div>\",\"PeriodicalId\":50380,\"journal\":{\"name\":\"IET Information Security\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6652217\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/6652217\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/6652217","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

安卓应用程序包(APK)的静态扫描识别已被广泛证明是一种有效且可扩展的方法。然而,现有的识别方法要么是从已知的 APK 中收集特征值进行低效的对比分析,要么使用昂贵的程序语法或语义分析方法来提取特征。因此,本文提出了一种有别于传统图分析的 APK 静态识别方法。我们将应用程序编程接口(API)调用图与复杂网络相匹配,并使用双中心分析方法计算 API 调用图中敏感节点的重要性,同时综合考虑敏感节点的全局影响和相对影响。我们的主要见解是,双中心性分析方法可以更准确地表征安卓恶意 APK 的图语义信息。我们创建并命名了 DCDroid 方法,并在包含 4428 个良性样本和 4626 个恶意样本的数据集上对其进行了评估。实验结果表明,与 Drebin、MaMaDroid、MalScan 和 HomeDroid 四种先进方法相比,DCDroid 识别安卓恶意 APK 的准确率为 97.5%,F1 值为 96.7%,比 HomeDroid 快 2 倍,比 Drebin 快 8 倍,比 MaMaDroid 快 17 倍。我们从Google Play市场抓取了10,000个APK,DCDroid能够找到68个恶意APK,其中67个是确认的Android恶意APK,具有很好的识别市场级恶意APK的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DCDroid: An APK Static Identification Method Based on Naïve Bayes Classifier and Dual-Centrality Analysis

The static scanning identification of android application packages (APK) has been widely proven to be an effective and scalable method. However, the existing identification methods either collect feature values from known APKs for inefficient comparative analysis, or use expensive program syntax or semantic analysis methods to extract features. Therefore, this paper proposes an APK static identification method that is different from traditional graph analysis. We match application programming interface (API) call graph to a complex network, and use a dual-centrality analysis method to calculate the importance of sensitive nodes in the API call graph, while integrating the global and relative influence of sensitive nodes. Our key insight is that the dual-centrality analysis method can more accurately characterize the graph semantic information of Android malicious APKs. We created and named a method DCDroid and evaluated it on a dataset of 4,428 benign samples and 4,626 malicious samples. The experimental results show that compared to the four advanced methods Drebin, MaMaDroid, MalScan, and HomeDroid, DCDroid can identify Android malicious APKs with an accuracy of 97.5%, with an F1 value of 96.7% and is two times faster than HomeDroid, eight times faster than Drebin, and 17 times faster than MaMaDroid. We grabbed 10,000 APKs from the Google Play Market, DCDroid was able to find 68 malicious APKs, of which 67 were confirmed Android malicious APKs, with a good ability to identify market-level malicious APKs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Information Security
IET Information Security 工程技术-计算机:理论方法
CiteScore
3.80
自引率
7.10%
发文量
47
审稿时长
8.6 months
期刊介绍: IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls. Scope: Access Control and Database Security Ad-Hoc Network Aspects Anonymity and E-Voting Authentication Block Ciphers and Hash Functions Blockchain, Bitcoin (Technical aspects only) Broadcast Encryption and Traitor Tracing Combinatorial Aspects Covert Channels and Information Flow Critical Infrastructures Cryptanalysis Dependability Digital Rights Management Digital Signature Schemes Digital Steganography Economic Aspects of Information Security Elliptic Curve Cryptography and Number Theory Embedded Systems Aspects Embedded Systems Security and Forensics Financial Cryptography Firewall Security Formal Methods and Security Verification Human Aspects Information Warfare and Survivability Intrusion Detection Java and XML Security Key Distribution Key Management Malware Multi-Party Computation and Threshold Cryptography Peer-to-peer Security PKIs Public-Key and Hybrid Encryption Quantum Cryptography Risks of using Computers Robust Networks Secret Sharing Secure Electronic Commerce Software Obfuscation Stream Ciphers Trust Models Watermarking and Fingerprinting Special Issues. Current Call for Papers: Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf
期刊最新文献
Functional Message Authentication Codes With Message and Function Privacy Lattice-Based CP-ABE for Optimal Broadcast Encryption With Polynomial-Depth Circuits Full-Accessible Multiparty Searchable Encryption Scheme for Shared Cloud Storage A Trust Based Anomaly Detection Scheme Using a Hybrid Deep Learning Model for IoT Routing Attacks Mitigation A Comprehensive Investigation of Anomaly Detection Methods in Deep Learning and Machine Learning: 2019–2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1