{"title":"内部是超地球和次海王星的主要储水层","authors":"Haiyang Luo, Caroline Dorn, Jie Deng","doi":"10.1038/s41550-024-02347-z","DOIUrl":null,"url":null,"abstract":"Water is an important component of exoplanets, with its distribution, that is, whether at the surface or deep inside, fundamentally influencing the planetary properties. The distribution of water in most exoplanets is determined by yet-unknown partition coefficients at extreme conditions. Here we first conduct ab initio molecular dynamics simulations to investigate the metal–silicate partition coefficients of water up to 1,000 GPa and then model planet interiors by considering the effects of water content on density, melting temperature and water partitioning. Our calculations reveal that water strongly partitions into iron over silicate at high pressures and, thus, would preferentially stay in a planet’s core. The results of our planet interior model challenge the notion of water worlds as imagined before: the majority of the bulk water budget (even more than 95%) can be stored deep within the core and the mantle, and not at the surface. For planets more massive than ~6 M⨁ and Earth-size planets (of lower mass and small water budgets), the majority of water resides deep in the cores of planets. Whether water is assumed to be at the surface or at depth can affect the radius up to 15–25% for a given mass. The exoplanets previously believed to be water-poor on the basis of mass–radius data may actually be rich in water. If water exists in super-Earth and sub-Neptune exoplanets, it is expected to be hidden deep in their cores and mantles, rather than at their surfaces. Exoplanets considered to be relatively dry might actually have abundant water sequestered in their interiors.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 11","pages":"1399-1407"},"PeriodicalIF":12.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interior as the dominant water reservoir in super-Earths and sub-Neptunes\",\"authors\":\"Haiyang Luo, Caroline Dorn, Jie Deng\",\"doi\":\"10.1038/s41550-024-02347-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water is an important component of exoplanets, with its distribution, that is, whether at the surface or deep inside, fundamentally influencing the planetary properties. The distribution of water in most exoplanets is determined by yet-unknown partition coefficients at extreme conditions. Here we first conduct ab initio molecular dynamics simulations to investigate the metal–silicate partition coefficients of water up to 1,000 GPa and then model planet interiors by considering the effects of water content on density, melting temperature and water partitioning. Our calculations reveal that water strongly partitions into iron over silicate at high pressures and, thus, would preferentially stay in a planet’s core. The results of our planet interior model challenge the notion of water worlds as imagined before: the majority of the bulk water budget (even more than 95%) can be stored deep within the core and the mantle, and not at the surface. For planets more massive than ~6 M⨁ and Earth-size planets (of lower mass and small water budgets), the majority of water resides deep in the cores of planets. Whether water is assumed to be at the surface or at depth can affect the radius up to 15–25% for a given mass. The exoplanets previously believed to be water-poor on the basis of mass–radius data may actually be rich in water. If water exists in super-Earth and sub-Neptune exoplanets, it is expected to be hidden deep in their cores and mantles, rather than at their surfaces. Exoplanets considered to be relatively dry might actually have abundant water sequestered in their interiors.\",\"PeriodicalId\":18778,\"journal\":{\"name\":\"Nature Astronomy\",\"volume\":\"8 11\",\"pages\":\"1399-1407\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41550-024-02347-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41550-024-02347-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The interior as the dominant water reservoir in super-Earths and sub-Neptunes
Water is an important component of exoplanets, with its distribution, that is, whether at the surface or deep inside, fundamentally influencing the planetary properties. The distribution of water in most exoplanets is determined by yet-unknown partition coefficients at extreme conditions. Here we first conduct ab initio molecular dynamics simulations to investigate the metal–silicate partition coefficients of water up to 1,000 GPa and then model planet interiors by considering the effects of water content on density, melting temperature and water partitioning. Our calculations reveal that water strongly partitions into iron over silicate at high pressures and, thus, would preferentially stay in a planet’s core. The results of our planet interior model challenge the notion of water worlds as imagined before: the majority of the bulk water budget (even more than 95%) can be stored deep within the core and the mantle, and not at the surface. For planets more massive than ~6 M⨁ and Earth-size planets (of lower mass and small water budgets), the majority of water resides deep in the cores of planets. Whether water is assumed to be at the surface or at depth can affect the radius up to 15–25% for a given mass. The exoplanets previously believed to be water-poor on the basis of mass–radius data may actually be rich in water. If water exists in super-Earth and sub-Neptune exoplanets, it is expected to be hidden deep in their cores and mantles, rather than at their surfaces. Exoplanets considered to be relatively dry might actually have abundant water sequestered in their interiors.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.