发育期 17-OHPC 暴露对大鼠中皮质边缘羟色胺能和多巴胺能通路以及青春期情绪相关行为的影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-20 DOI:10.1002/dev.22536
Paige L. Graney, Evelyn L. Sarno, Jessie E. Miller, Christine K. Wagner
{"title":"发育期 17-OHPC 暴露对大鼠中皮质边缘羟色胺能和多巴胺能通路以及青春期情绪相关行为的影响","authors":"Paige L. Graney,&nbsp;Evelyn L. Sarno,&nbsp;Jessie E. Miller,&nbsp;Christine K. Wagner","doi":"10.1002/dev.22536","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The synthetic progestin, 17-α-hydroxyprogesterone caproate (17-OHPC), is administered to pregnant individuals at risk for recurrent preterm birth during a critical period of fetal mesocorticolimbic serotonergic and dopaminergic pathway development. These pathways play an important role in regulating cognitive behaviors later in life. Despite this, there has been very little research regarding the potential long-term effects of 17-OHPC on the behavioral and neural development of exposed children. In rodents, developmental exposure to 17-OHPC disrupts serotonergic and dopaminergic innervation of the medial prefrontal cortex and impairs decision-making in complex cognitive tasks in adulthood. The present study tested the hypothesis that developmental exposure to 17-OHPC similarly disrupts the development of serotonergic and dopaminergic pathways within limbic targets and subsequent mood-related behaviors. Developmental 17-OHPC exposure significantly increased the density of serotonin transporter–IR fibers in CA1, CA2/3, and the suprapyramidal blade of dentate gyrus in hippocampus and significantly reduced the density of TH-IR fibers within the nucleus accumbens shell in males but had no effect in females during adolescence. Irregular microglia activational phenotype and number were also observed in the hippocampus of 17-OHPC-exposed males. Developmental 17-OHPC reduced the latency to immobility in males in the forced swim test but did not affect sucrose consumption in a sucrose preference test. These findings suggest that 17-OHPC exerts sex-specific effects on the development of mesocorticolimbic pathways and mood-related behavior in adolescence and highlight the need to investigate effects in adolescent children.</p>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implications of Developmental 17-OHPC Exposure on the Mesocorticolimbic Serotonergic and Dopaminergic Pathways and Adolescent Mood–Related Behavior in Rats\",\"authors\":\"Paige L. Graney,&nbsp;Evelyn L. Sarno,&nbsp;Jessie E. Miller,&nbsp;Christine K. Wagner\",\"doi\":\"10.1002/dev.22536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The synthetic progestin, 17-α-hydroxyprogesterone caproate (17-OHPC), is administered to pregnant individuals at risk for recurrent preterm birth during a critical period of fetal mesocorticolimbic serotonergic and dopaminergic pathway development. These pathways play an important role in regulating cognitive behaviors later in life. Despite this, there has been very little research regarding the potential long-term effects of 17-OHPC on the behavioral and neural development of exposed children. In rodents, developmental exposure to 17-OHPC disrupts serotonergic and dopaminergic innervation of the medial prefrontal cortex and impairs decision-making in complex cognitive tasks in adulthood. The present study tested the hypothesis that developmental exposure to 17-OHPC similarly disrupts the development of serotonergic and dopaminergic pathways within limbic targets and subsequent mood-related behaviors. Developmental 17-OHPC exposure significantly increased the density of serotonin transporter–IR fibers in CA1, CA2/3, and the suprapyramidal blade of dentate gyrus in hippocampus and significantly reduced the density of TH-IR fibers within the nucleus accumbens shell in males but had no effect in females during adolescence. Irregular microglia activational phenotype and number were also observed in the hippocampus of 17-OHPC-exposed males. Developmental 17-OHPC reduced the latency to immobility in males in the forced swim test but did not affect sucrose consumption in a sucrose preference test. These findings suggest that 17-OHPC exerts sex-specific effects on the development of mesocorticolimbic pathways and mood-related behavior in adolescence and highlight the need to investigate effects in adolescent children.</p>\\n </div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dev.22536\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dev.22536","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合成孕激素己酸17-α-羟孕酮(17-OHPC)是在胎儿皮质中层边缘5-羟色胺能和多巴胺能通路发育的关键时期给有复发性早产风险的孕妇服用的。这些通路在日后调节认知行为方面发挥着重要作用。尽管如此,有关 17-OHPC 对暴露儿童的行为和神经发育的潜在长期影响的研究却很少。在啮齿类动物中,发育期暴露于 17-OHPC 会破坏内侧前额叶皮层的血清素能和多巴胺能神经支配,并损害成年后在复杂认知任务中的决策能力。本研究对以下假设进行了检验:发育期暴露于 17-OHPC 同样会破坏边缘目标内的血清素能和多巴胺能通路的发育以及随后的情绪相关行为。发育期暴露于 17-OHPC 会显著增加男性海马 CA1、CA2/3 和齿状回锥体上叶片中血清素转运体-IR 纤维的密度,并显著降低青少年期女性伏隔核内 TH-IR 纤维的密度,但对女性没有影响。在暴露于 17-OHPC 的男性海马中还观察到不规则的小胶质细胞活化表型和数量。发育期 17-OHPC 可降低雄性动物在强迫游泳测试中的不动潜伏期,但不会影响蔗糖偏好测试中的蔗糖消耗量。这些研究结果表明,17-OHPC 对青春期中皮质边缘通路和情绪相关行为的发育具有性别特异性影响,并强调了研究其对青春期儿童影响的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implications of Developmental 17-OHPC Exposure on the Mesocorticolimbic Serotonergic and Dopaminergic Pathways and Adolescent Mood–Related Behavior in Rats

The synthetic progestin, 17-α-hydroxyprogesterone caproate (17-OHPC), is administered to pregnant individuals at risk for recurrent preterm birth during a critical period of fetal mesocorticolimbic serotonergic and dopaminergic pathway development. These pathways play an important role in regulating cognitive behaviors later in life. Despite this, there has been very little research regarding the potential long-term effects of 17-OHPC on the behavioral and neural development of exposed children. In rodents, developmental exposure to 17-OHPC disrupts serotonergic and dopaminergic innervation of the medial prefrontal cortex and impairs decision-making in complex cognitive tasks in adulthood. The present study tested the hypothesis that developmental exposure to 17-OHPC similarly disrupts the development of serotonergic and dopaminergic pathways within limbic targets and subsequent mood-related behaviors. Developmental 17-OHPC exposure significantly increased the density of serotonin transporter–IR fibers in CA1, CA2/3, and the suprapyramidal blade of dentate gyrus in hippocampus and significantly reduced the density of TH-IR fibers within the nucleus accumbens shell in males but had no effect in females during adolescence. Irregular microglia activational phenotype and number were also observed in the hippocampus of 17-OHPC-exposed males. Developmental 17-OHPC reduced the latency to immobility in males in the forced swim test but did not affect sucrose consumption in a sucrose preference test. These findings suggest that 17-OHPC exerts sex-specific effects on the development of mesocorticolimbic pathways and mood-related behavior in adolescence and highlight the need to investigate effects in adolescent children.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1