Paige L. Graney, Evelyn L. Sarno, Jessie E. Miller, Christine K. Wagner
{"title":"发育期 17-OHPC 暴露对大鼠中皮质边缘羟色胺能和多巴胺能通路以及青春期情绪相关行为的影响","authors":"Paige L. Graney, Evelyn L. Sarno, Jessie E. Miller, Christine K. Wagner","doi":"10.1002/dev.22536","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The synthetic progestin, 17-α-hydroxyprogesterone caproate (17-OHPC), is administered to pregnant individuals at risk for recurrent preterm birth during a critical period of fetal mesocorticolimbic serotonergic and dopaminergic pathway development. These pathways play an important role in regulating cognitive behaviors later in life. Despite this, there has been very little research regarding the potential long-term effects of 17-OHPC on the behavioral and neural development of exposed children. In rodents, developmental exposure to 17-OHPC disrupts serotonergic and dopaminergic innervation of the medial prefrontal cortex and impairs decision-making in complex cognitive tasks in adulthood. The present study tested the hypothesis that developmental exposure to 17-OHPC similarly disrupts the development of serotonergic and dopaminergic pathways within limbic targets and subsequent mood-related behaviors. Developmental 17-OHPC exposure significantly increased the density of serotonin transporter–IR fibers in CA1, CA2/3, and the suprapyramidal blade of dentate gyrus in hippocampus and significantly reduced the density of TH-IR fibers within the nucleus accumbens shell in males but had no effect in females during adolescence. Irregular microglia activational phenotype and number were also observed in the hippocampus of 17-OHPC-exposed males. Developmental 17-OHPC reduced the latency to immobility in males in the forced swim test but did not affect sucrose consumption in a sucrose preference test. These findings suggest that 17-OHPC exerts sex-specific effects on the development of mesocorticolimbic pathways and mood-related behavior in adolescence and highlight the need to investigate effects in adolescent children.</p>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implications of Developmental 17-OHPC Exposure on the Mesocorticolimbic Serotonergic and Dopaminergic Pathways and Adolescent Mood–Related Behavior in Rats\",\"authors\":\"Paige L. Graney, Evelyn L. Sarno, Jessie E. Miller, Christine K. Wagner\",\"doi\":\"10.1002/dev.22536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The synthetic progestin, 17-α-hydroxyprogesterone caproate (17-OHPC), is administered to pregnant individuals at risk for recurrent preterm birth during a critical period of fetal mesocorticolimbic serotonergic and dopaminergic pathway development. These pathways play an important role in regulating cognitive behaviors later in life. Despite this, there has been very little research regarding the potential long-term effects of 17-OHPC on the behavioral and neural development of exposed children. In rodents, developmental exposure to 17-OHPC disrupts serotonergic and dopaminergic innervation of the medial prefrontal cortex and impairs decision-making in complex cognitive tasks in adulthood. The present study tested the hypothesis that developmental exposure to 17-OHPC similarly disrupts the development of serotonergic and dopaminergic pathways within limbic targets and subsequent mood-related behaviors. Developmental 17-OHPC exposure significantly increased the density of serotonin transporter–IR fibers in CA1, CA2/3, and the suprapyramidal blade of dentate gyrus in hippocampus and significantly reduced the density of TH-IR fibers within the nucleus accumbens shell in males but had no effect in females during adolescence. Irregular microglia activational phenotype and number were also observed in the hippocampus of 17-OHPC-exposed males. Developmental 17-OHPC reduced the latency to immobility in males in the forced swim test but did not affect sucrose consumption in a sucrose preference test. These findings suggest that 17-OHPC exerts sex-specific effects on the development of mesocorticolimbic pathways and mood-related behavior in adolescence and highlight the need to investigate effects in adolescent children.</p>\\n </div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dev.22536\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dev.22536","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Implications of Developmental 17-OHPC Exposure on the Mesocorticolimbic Serotonergic and Dopaminergic Pathways and Adolescent Mood–Related Behavior in Rats
The synthetic progestin, 17-α-hydroxyprogesterone caproate (17-OHPC), is administered to pregnant individuals at risk for recurrent preterm birth during a critical period of fetal mesocorticolimbic serotonergic and dopaminergic pathway development. These pathways play an important role in regulating cognitive behaviors later in life. Despite this, there has been very little research regarding the potential long-term effects of 17-OHPC on the behavioral and neural development of exposed children. In rodents, developmental exposure to 17-OHPC disrupts serotonergic and dopaminergic innervation of the medial prefrontal cortex and impairs decision-making in complex cognitive tasks in adulthood. The present study tested the hypothesis that developmental exposure to 17-OHPC similarly disrupts the development of serotonergic and dopaminergic pathways within limbic targets and subsequent mood-related behaviors. Developmental 17-OHPC exposure significantly increased the density of serotonin transporter–IR fibers in CA1, CA2/3, and the suprapyramidal blade of dentate gyrus in hippocampus and significantly reduced the density of TH-IR fibers within the nucleus accumbens shell in males but had no effect in females during adolescence. Irregular microglia activational phenotype and number were also observed in the hippocampus of 17-OHPC-exposed males. Developmental 17-OHPC reduced the latency to immobility in males in the forced swim test but did not affect sucrose consumption in a sucrose preference test. These findings suggest that 17-OHPC exerts sex-specific effects on the development of mesocorticolimbic pathways and mood-related behavior in adolescence and highlight the need to investigate effects in adolescent children.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.