Chunjiang Wei, Ziwen Gao, Martina Knabel, Martin Ulbricht, Stefan Senekowitsch, Peter Erfurt, Norman Maggi, Bastian Zwick, Thomas Eickner, Farnaz Matin-Mann, Anne Seidlitz, Thomas Lenarz, Verena Scheper
{"title":"开发用于人工耳蜗药物治疗的给药圆窗壁龛植入体。","authors":"Chunjiang Wei, Ziwen Gao, Martina Knabel, Martin Ulbricht, Stefan Senekowitsch, Peter Erfurt, Norman Maggi, Bastian Zwick, Thomas Eickner, Farnaz Matin-Mann, Anne Seidlitz, Thomas Lenarz, Verena Scheper","doi":"10.1080/10717544.2024.2392755","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There exists an unfulfilled requirement for effective cochlear pharmacotherapy. Controlled local drug delivery could lead to effective bioavailability. The round window niche (RWN), a cavity in the middle ear, is connected to the cochlea via a membrane through which drug can diffuse. We are developing individualized drug-eluting RWN implants (RNIs). To test their effectiveness in guinea pigs, a commonly used model in cochlear pharmacology studies, it is first necessary to develop guinea pig RNIs (GP-RNI).</p><p><strong>Methods: </strong>Since guinea pigs do not have a RWN such as it is present in humans and to reduce the variables in <i>in vivo</i> studies, a one-size-fits-all GP-RNI model was designed using 12 data sets of Dunkin-Hartley guinea pigs. The model was 3D-printed using silicone. The accuracy and precision of printing, distribution of the sample ingredient dexamethasone (DEX), biocompatibility, bio-efficacy, implantability and drug release were tested <i>in vitro</i>. The GP-RNI efficacy was validated in cochlear implant-traumatized guinea pigs <i>in vivo</i>.</p><p><strong>Results: </strong>The 3D-printed GP-RNI was precise, accurate and fitted in all tested guinea pig RWNs. DEX was homogeneously included in the silicone. The GP-RNI containing 1% DEX was biocompatible, bio-effective and showed a two-phase and sustained DEX release <i>in vitro</i>, while it reduced fibrous tissue growth around the cochlear implant <i>in vivo</i>.</p><p><strong>Conclusions: </strong>We developed a GP-RNI that can be used for precise inner ear drug delivery in guinea pigs, providing a reliable platform for testing the RNI's safety and efficacy, with potential implications for future clinical translation.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2392755"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340218/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a drug delivering round window niche implant for cochlear pharmacotherapy.\",\"authors\":\"Chunjiang Wei, Ziwen Gao, Martina Knabel, Martin Ulbricht, Stefan Senekowitsch, Peter Erfurt, Norman Maggi, Bastian Zwick, Thomas Eickner, Farnaz Matin-Mann, Anne Seidlitz, Thomas Lenarz, Verena Scheper\",\"doi\":\"10.1080/10717544.2024.2392755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>There exists an unfulfilled requirement for effective cochlear pharmacotherapy. Controlled local drug delivery could lead to effective bioavailability. The round window niche (RWN), a cavity in the middle ear, is connected to the cochlea via a membrane through which drug can diffuse. We are developing individualized drug-eluting RWN implants (RNIs). To test their effectiveness in guinea pigs, a commonly used model in cochlear pharmacology studies, it is first necessary to develop guinea pig RNIs (GP-RNI).</p><p><strong>Methods: </strong>Since guinea pigs do not have a RWN such as it is present in humans and to reduce the variables in <i>in vivo</i> studies, a one-size-fits-all GP-RNI model was designed using 12 data sets of Dunkin-Hartley guinea pigs. The model was 3D-printed using silicone. The accuracy and precision of printing, distribution of the sample ingredient dexamethasone (DEX), biocompatibility, bio-efficacy, implantability and drug release were tested <i>in vitro</i>. The GP-RNI efficacy was validated in cochlear implant-traumatized guinea pigs <i>in vivo</i>.</p><p><strong>Results: </strong>The 3D-printed GP-RNI was precise, accurate and fitted in all tested guinea pig RWNs. DEX was homogeneously included in the silicone. The GP-RNI containing 1% DEX was biocompatible, bio-effective and showed a two-phase and sustained DEX release <i>in vitro</i>, while it reduced fibrous tissue growth around the cochlear implant <i>in vivo</i>.</p><p><strong>Conclusions: </strong>We developed a GP-RNI that can be used for precise inner ear drug delivery in guinea pigs, providing a reliable platform for testing the RNI's safety and efficacy, with potential implications for future clinical translation.</p>\",\"PeriodicalId\":11679,\"journal\":{\"name\":\"Drug Delivery\",\"volume\":\"31 1\",\"pages\":\"2392755\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340218/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10717544.2024.2392755\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2024.2392755","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Development of a drug delivering round window niche implant for cochlear pharmacotherapy.
Background: There exists an unfulfilled requirement for effective cochlear pharmacotherapy. Controlled local drug delivery could lead to effective bioavailability. The round window niche (RWN), a cavity in the middle ear, is connected to the cochlea via a membrane through which drug can diffuse. We are developing individualized drug-eluting RWN implants (RNIs). To test their effectiveness in guinea pigs, a commonly used model in cochlear pharmacology studies, it is first necessary to develop guinea pig RNIs (GP-RNI).
Methods: Since guinea pigs do not have a RWN such as it is present in humans and to reduce the variables in in vivo studies, a one-size-fits-all GP-RNI model was designed using 12 data sets of Dunkin-Hartley guinea pigs. The model was 3D-printed using silicone. The accuracy and precision of printing, distribution of the sample ingredient dexamethasone (DEX), biocompatibility, bio-efficacy, implantability and drug release were tested in vitro. The GP-RNI efficacy was validated in cochlear implant-traumatized guinea pigs in vivo.
Results: The 3D-printed GP-RNI was precise, accurate and fitted in all tested guinea pig RWNs. DEX was homogeneously included in the silicone. The GP-RNI containing 1% DEX was biocompatible, bio-effective and showed a two-phase and sustained DEX release in vitro, while it reduced fibrous tissue growth around the cochlear implant in vivo.
Conclusions: We developed a GP-RNI that can be used for precise inner ear drug delivery in guinea pigs, providing a reliable platform for testing the RNI's safety and efficacy, with potential implications for future clinical translation.
期刊介绍:
Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.