焦化厂土壤浸出液对斑马鱼胚胎/幼体发育模型的毒性

IF 2.7 4区 医学 Q3 TOXICOLOGY Journal of Applied Toxicology Pub Date : 2024-08-20 DOI:10.1002/jat.4692
Guangchao Yang, Jining Liu, Qian Yang, Wen Gu
{"title":"焦化厂土壤浸出液对斑马鱼胚胎/幼体发育模型的毒性","authors":"Guangchao Yang,&nbsp;Jining Liu,&nbsp;Qian Yang,&nbsp;Wen Gu","doi":"10.1002/jat.4692","DOIUrl":null,"url":null,"abstract":"<p>The coking industry in China is the largest coke supplier in the world. Contaminated soil in industrial areas poses a serious threat to human and ecosystems. Most of the studies investigated the toxicity of soil from coking plant on soil microorganisms, while the toxic effects of soil leaching liquor on aquatics are limited. In this study, the composition of soil leaching liquor from a coking plant in Taiyuan (TY) was analyzed, and the developmental toxicity on zebrafish was evaluated. The results showed that a total of 91 polycyclic aromatic hydrocarbons were detected in the leaching liquor, followed by phenols and benzene series. The leaching liquor induced developmental impairment in zebrafish larvae, including delayed incubation, deficits in locomotor behavior, vascular and cardiac dysplasia, and impaired neurodevelopment. The results of metabolomics analysis showed that TY soil leaching liquor induced significant metabolic profile disturbances in zebrafish embryos/larvae. The developmental toxicity of the leaching liquor metabolic disorders may be associated with the leaching liquor-induced abnormalities in zebrafish embryonic development. Metabolic pathways were identified by arginine and proline metabolism, phosphotransferase system, starch and sucrose metabolism, steroid biosynthesis, beta-alanine metabolism, and nucleotide metabolism pathways.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":"44 12","pages":"1962-1975"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicity of soil leaching liquor from coking plant in developmental zebrafish embryos/larvae model\",\"authors\":\"Guangchao Yang,&nbsp;Jining Liu,&nbsp;Qian Yang,&nbsp;Wen Gu\",\"doi\":\"10.1002/jat.4692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The coking industry in China is the largest coke supplier in the world. Contaminated soil in industrial areas poses a serious threat to human and ecosystems. Most of the studies investigated the toxicity of soil from coking plant on soil microorganisms, while the toxic effects of soil leaching liquor on aquatics are limited. In this study, the composition of soil leaching liquor from a coking plant in Taiyuan (TY) was analyzed, and the developmental toxicity on zebrafish was evaluated. The results showed that a total of 91 polycyclic aromatic hydrocarbons were detected in the leaching liquor, followed by phenols and benzene series. The leaching liquor induced developmental impairment in zebrafish larvae, including delayed incubation, deficits in locomotor behavior, vascular and cardiac dysplasia, and impaired neurodevelopment. The results of metabolomics analysis showed that TY soil leaching liquor induced significant metabolic profile disturbances in zebrafish embryos/larvae. The developmental toxicity of the leaching liquor metabolic disorders may be associated with the leaching liquor-induced abnormalities in zebrafish embryonic development. Metabolic pathways were identified by arginine and proline metabolism, phosphotransferase system, starch and sucrose metabolism, steroid biosynthesis, beta-alanine metabolism, and nucleotide metabolism pathways.</p>\",\"PeriodicalId\":15242,\"journal\":{\"name\":\"Journal of Applied Toxicology\",\"volume\":\"44 12\",\"pages\":\"1962-1975\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jat.4692\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jat.4692","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

中国的焦化行业是世界上最大的焦炭供应商。工业区受污染的土壤对人类和生态系统构成严重威胁。大多数研究调查了焦化厂土壤对土壤微生物的毒性,而土壤浸出液对水生生物的毒性影响却很有限。本研究分析了太原某焦化厂土壤浸出液的成分,并评估了其对斑马鱼发育的毒性。结果表明,浸出液中共检测到 91 种多环芳烃,其次是酚类和苯系列。浸出液导致斑马鱼幼体发育受损,包括孵化延迟、运动行为障碍、血管和心脏发育不良以及神经发育受损。代谢组学分析结果表明,TY 土壤浸出液诱导斑马鱼胚胎/幼体出现明显的代谢紊乱。浸出液代谢紊乱的发育毒性可能与浸出液诱导的斑马鱼胚胎发育异常有关。确定的代谢途径包括精氨酸和脯氨酸代谢、磷酸转移酶系统、淀粉和蔗糖代谢、类固醇生物合成、β-丙氨酸代谢和核苷酸代谢途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toxicity of soil leaching liquor from coking plant in developmental zebrafish embryos/larvae model

The coking industry in China is the largest coke supplier in the world. Contaminated soil in industrial areas poses a serious threat to human and ecosystems. Most of the studies investigated the toxicity of soil from coking plant on soil microorganisms, while the toxic effects of soil leaching liquor on aquatics are limited. In this study, the composition of soil leaching liquor from a coking plant in Taiyuan (TY) was analyzed, and the developmental toxicity on zebrafish was evaluated. The results showed that a total of 91 polycyclic aromatic hydrocarbons were detected in the leaching liquor, followed by phenols and benzene series. The leaching liquor induced developmental impairment in zebrafish larvae, including delayed incubation, deficits in locomotor behavior, vascular and cardiac dysplasia, and impaired neurodevelopment. The results of metabolomics analysis showed that TY soil leaching liquor induced significant metabolic profile disturbances in zebrafish embryos/larvae. The developmental toxicity of the leaching liquor metabolic disorders may be associated with the leaching liquor-induced abnormalities in zebrafish embryonic development. Metabolic pathways were identified by arginine and proline metabolism, phosphotransferase system, starch and sucrose metabolism, steroid biosynthesis, beta-alanine metabolism, and nucleotide metabolism pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
6.10%
发文量
145
审稿时长
1 months
期刊介绍: Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.
期刊最新文献
A Rapid Quantitative Assessment Method for Liver Damage Effects of Compounds Based on Zebrafish Liver Partition Area Ratio. Association of Stress Defense System With Fine Particulate Matter Exposure: Mechanism Analysis and Application Prospects. The Impact of NO2 on Epithelial Barrier Integrity of a Primary Cell-Based Air-Liquid Interface Model of the Nasal Respiratory Epithelium. The Role of PI3K/AKT/HIF-1α Pathway in the Effect of Nano-TiO2 on Lactate Production in TM4 Cells. Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1