{"title":"加权单步全基因组关联研究揭示韩国陆地猪生产性状的新候选基因","authors":"Jun Park, Chong-Sam Na","doi":"10.5187/jast.2024.e104","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to identify genomic regions and candidate genes associated with productive traits using a total of 37,099 productive records and 6,683 single nucleotide polymorphism (SNP) data obtained from five Great-Grand-Parents (GGP) farms in Landrace. The estimated of heritabilities for days to 105 kg (AGE), average daily gain (ADG), backfat thickness (BF), and eye muscle area (EMA) were 0.49, 0.49, 0.56, and 0.23, respectively. We identified a genetic window that explained 2.05%-2.34% for each trait of the total genetic variance. We observed a clear partitioning of the four traits into two groups, and the most significant genomic region for AGE and ADG were located on the <i>Sus scrofa</i> chromosome (SSC) 1, while BF and EMA were located on SSC 2. We conducted Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), which revealed results in three biological processes, four cellular component, three molecular function, and six KEGG pathway. Significant SNPs can be used as markers for quantitative trait loci (QTL) investigation and genomic selection (GS) for productive traits in Landrace pig.</p>","PeriodicalId":14923,"journal":{"name":"Journal of Animal Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331376/pdf/","citationCount":"0","resultStr":"{\"title\":\"Weighted single-step genome-wide association study to reveal new candidate genes for productive traits of Landrace pig in Korea.\",\"authors\":\"Jun Park, Chong-Sam Na\",\"doi\":\"10.5187/jast.2024.e104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study was to identify genomic regions and candidate genes associated with productive traits using a total of 37,099 productive records and 6,683 single nucleotide polymorphism (SNP) data obtained from five Great-Grand-Parents (GGP) farms in Landrace. The estimated of heritabilities for days to 105 kg (AGE), average daily gain (ADG), backfat thickness (BF), and eye muscle area (EMA) were 0.49, 0.49, 0.56, and 0.23, respectively. We identified a genetic window that explained 2.05%-2.34% for each trait of the total genetic variance. We observed a clear partitioning of the four traits into two groups, and the most significant genomic region for AGE and ADG were located on the <i>Sus scrofa</i> chromosome (SSC) 1, while BF and EMA were located on SSC 2. We conducted Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), which revealed results in three biological processes, four cellular component, three molecular function, and six KEGG pathway. Significant SNPs can be used as markers for quantitative trait loci (QTL) investigation and genomic selection (GS) for productive traits in Landrace pig.</p>\",\"PeriodicalId\":14923,\"journal\":{\"name\":\"Journal of Animal Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331376/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Science and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5187/jast.2024.e104\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5187/jast.2024.e104","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Weighted single-step genome-wide association study to reveal new candidate genes for productive traits of Landrace pig in Korea.
The objective of this study was to identify genomic regions and candidate genes associated with productive traits using a total of 37,099 productive records and 6,683 single nucleotide polymorphism (SNP) data obtained from five Great-Grand-Parents (GGP) farms in Landrace. The estimated of heritabilities for days to 105 kg (AGE), average daily gain (ADG), backfat thickness (BF), and eye muscle area (EMA) were 0.49, 0.49, 0.56, and 0.23, respectively. We identified a genetic window that explained 2.05%-2.34% for each trait of the total genetic variance. We observed a clear partitioning of the four traits into two groups, and the most significant genomic region for AGE and ADG were located on the Sus scrofa chromosome (SSC) 1, while BF and EMA were located on SSC 2. We conducted Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), which revealed results in three biological processes, four cellular component, three molecular function, and six KEGG pathway. Significant SNPs can be used as markers for quantitative trait loci (QTL) investigation and genomic selection (GS) for productive traits in Landrace pig.
期刊介绍:
Journal of Animal Science and Technology (J. Anim. Sci. Technol. or JAST) is a peer-reviewed, open access journal publishing original research, review articles and notes in all fields of animal science.
Topics covered by the journal include: genetics and breeding, physiology, nutrition of monogastric animals, nutrition of ruminants, animal products (milk, meat, eggs and their by-products) and their processing, grasslands and roughages, livestock environment, animal biotechnology, animal behavior and welfare.
Articles generally report research involving beef cattle, dairy cattle, pigs, companion animals, goats, horses, and sheep. However, studies involving other farm animals, aquatic and wildlife species, and laboratory animal species that address fundamental questions related to livestock and companion animal biology will also be considered for publication.
The Journal of Animal Science and Technology (J. Anim. Technol. or JAST) has been the official journal of The Korean Society of Animal Science and Technology (KSAST) since 2000, formerly known as The Korean Journal of Animal Sciences (launched in 1956).