类杆菌和梭状芽孢杆菌能够降解草食性鱼类 Kyphosus sydneyanus 后肠中的一系列多糖。

IF 5.1 Q1 ECOLOGY ISME communications Pub Date : 2024-08-01 eCollection Date: 2024-01-01 DOI:10.1093/ismeco/ycae102
Cesar T Facimoto, Kendall D Clements, W Lindsey White, Kim M Handley
{"title":"类杆菌和梭状芽孢杆菌能够降解草食性鱼类 Kyphosus sydneyanus 后肠中的一系列多糖。","authors":"Cesar T Facimoto, Kendall D Clements, W Lindsey White, Kim M Handley","doi":"10.1093/ismeco/ycae102","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiota of the marine herbivorous fish <i>Kyphosus sydneyanus</i> are thought to play an important role in host nutrition by supplying short-chain fatty acids (SCFAs) through fermentation of dietary red and brown macroalgae. Here, using 645 metagenome-assembled genomes (MAGs) from wild fish, we determined the capacity of different bacterial taxa to degrade seaweed carbohydrates along the gut. Most bacteria (99%) were unclassified at the species level. Gut communities and CAZyme-related transcriptional activity were dominated by <i>Bacteroidia</i> and <i>Clostridia</i>. Both classes possess genes CAZymes acting on internal polysaccharide bonds, suggesting their role initiating glycan depolymerization, followed by rarer <i>Gammaproteobacteria</i> and <i>Verrucomicrobiae</i>. Results indicate that <i>Bacteroidia</i> utilize substrates in both brown and red algae, whereas other taxa, namely, <i>Clostridia</i>, <i>Bacilli</i>, and <i>Verrucomicrobiae</i>, utilize mainly brown algae. <i>Bacteroidia</i> had the highest CAZyme gene densities overall, and <i>Alistipes</i> were especially enriched in CAZyme gene clusters (<i>n</i> = 73 versus just 62 distributed across all other taxa), pointing to an enhanced capacity for macroalgal polysaccharide utilization (e.g., alginate, laminarin, and sulfated polysaccharides). Pairwise correlations of MAG relative abundances and encoded CAZyme compositions provide evidence of potential inter-species collaborations. Co-abundant MAGs exhibited complementary degradative capacities for specific substrates, and flexibility in their capacity to source carbon (e.g., glucose- or galactose-rich glycans), possibly facilitating coexistence via niche partitioning. Results indicate the potential for collaborative microbial carbohydrate metabolism in the <i>K. sydneyanus</i> gut, that a greater variety of taxa contribute to the breakdown of brown versus red dietary algae, and that <i>Bacteroidia</i> encompass specialized macroalgae degraders.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333855/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Bacteroidia</i> and <i>Clostridia</i> are equipped to degrade a cascade of polysaccharides along the hindgut of the herbivorous fish <i>Kyphosus sydneyanus</i>.\",\"authors\":\"Cesar T Facimoto, Kendall D Clements, W Lindsey White, Kim M Handley\",\"doi\":\"10.1093/ismeco/ycae102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gut microbiota of the marine herbivorous fish <i>Kyphosus sydneyanus</i> are thought to play an important role in host nutrition by supplying short-chain fatty acids (SCFAs) through fermentation of dietary red and brown macroalgae. Here, using 645 metagenome-assembled genomes (MAGs) from wild fish, we determined the capacity of different bacterial taxa to degrade seaweed carbohydrates along the gut. Most bacteria (99%) were unclassified at the species level. Gut communities and CAZyme-related transcriptional activity were dominated by <i>Bacteroidia</i> and <i>Clostridia</i>. Both classes possess genes CAZymes acting on internal polysaccharide bonds, suggesting their role initiating glycan depolymerization, followed by rarer <i>Gammaproteobacteria</i> and <i>Verrucomicrobiae</i>. Results indicate that <i>Bacteroidia</i> utilize substrates in both brown and red algae, whereas other taxa, namely, <i>Clostridia</i>, <i>Bacilli</i>, and <i>Verrucomicrobiae</i>, utilize mainly brown algae. <i>Bacteroidia</i> had the highest CAZyme gene densities overall, and <i>Alistipes</i> were especially enriched in CAZyme gene clusters (<i>n</i> = 73 versus just 62 distributed across all other taxa), pointing to an enhanced capacity for macroalgal polysaccharide utilization (e.g., alginate, laminarin, and sulfated polysaccharides). Pairwise correlations of MAG relative abundances and encoded CAZyme compositions provide evidence of potential inter-species collaborations. Co-abundant MAGs exhibited complementary degradative capacities for specific substrates, and flexibility in their capacity to source carbon (e.g., glucose- or galactose-rich glycans), possibly facilitating coexistence via niche partitioning. Results indicate the potential for collaborative microbial carbohydrate metabolism in the <i>K. sydneyanus</i> gut, that a greater variety of taxa contribute to the breakdown of brown versus red dietary algae, and that <i>Bacteroidia</i> encompass specialized macroalgae degraders.</p>\",\"PeriodicalId\":73516,\"journal\":{\"name\":\"ISME communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333855/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismeco/ycae102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycae102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人们认为海洋草食性鱼类 Kyphosus sydneyanus 的肠道微生物群通过发酵食物中的红色和棕色大型藻类提供短链脂肪酸 (SCFA),从而在宿主营养中发挥重要作用。在这里,我们利用来自野生鱼类的 645 个元基因组(MAGs),测定了不同细菌类群在肠道中降解海藻碳水化合物的能力。大多数细菌(99%)在物种水平上未分类。肠道群落和 CAZyme 相关转录活动主要由类杆菌和梭状芽孢杆菌主导。这两类细菌都拥有作用于内部多糖键的 CAZymes 基因,这表明它们在启动糖解聚过程中发挥了作用。结果表明,类杆菌属既利用褐藻中的底物,也利用红藻中的底物,而其他类群,即梭状芽孢杆菌属、芽孢杆菌属和疣菌属,则主要利用褐藻中的底物。类杆菌科的 CAZyme 基因密度最高,而藻类杆菌科的 CAZyme 基因群尤其丰富(73 个,而其他类群只有 62 个),这表明它们利用大型藻类多糖(如藻酸盐、层糖蛋白和硫酸化多糖)的能力增强。MAG 相对丰度与编码的 CAZyme 组成的成对相关性为潜在的物种间合作提供了证据。共丰的 MAGs 对特定底物的降解能力具有互补性,其碳源能力(如富含葡萄糖或半乳糖的聚糖)也具有灵活性,这可能有助于通过生态位划分实现共存。研究结果表明,K. sydneyanus肠道中的微生物碳水化合物代谢具有协同作用的潜力,更多种类的类群参与了褐藻与红藻的分解,类杆菌包括专门的大型藻类降解者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bacteroidia and Clostridia are equipped to degrade a cascade of polysaccharides along the hindgut of the herbivorous fish Kyphosus sydneyanus.

The gut microbiota of the marine herbivorous fish Kyphosus sydneyanus are thought to play an important role in host nutrition by supplying short-chain fatty acids (SCFAs) through fermentation of dietary red and brown macroalgae. Here, using 645 metagenome-assembled genomes (MAGs) from wild fish, we determined the capacity of different bacterial taxa to degrade seaweed carbohydrates along the gut. Most bacteria (99%) were unclassified at the species level. Gut communities and CAZyme-related transcriptional activity were dominated by Bacteroidia and Clostridia. Both classes possess genes CAZymes acting on internal polysaccharide bonds, suggesting their role initiating glycan depolymerization, followed by rarer Gammaproteobacteria and Verrucomicrobiae. Results indicate that Bacteroidia utilize substrates in both brown and red algae, whereas other taxa, namely, Clostridia, Bacilli, and Verrucomicrobiae, utilize mainly brown algae. Bacteroidia had the highest CAZyme gene densities overall, and Alistipes were especially enriched in CAZyme gene clusters (n = 73 versus just 62 distributed across all other taxa), pointing to an enhanced capacity for macroalgal polysaccharide utilization (e.g., alginate, laminarin, and sulfated polysaccharides). Pairwise correlations of MAG relative abundances and encoded CAZyme compositions provide evidence of potential inter-species collaborations. Co-abundant MAGs exhibited complementary degradative capacities for specific substrates, and flexibility in their capacity to source carbon (e.g., glucose- or galactose-rich glycans), possibly facilitating coexistence via niche partitioning. Results indicate the potential for collaborative microbial carbohydrate metabolism in the K. sydneyanus gut, that a greater variety of taxa contribute to the breakdown of brown versus red dietary algae, and that Bacteroidia encompass specialized macroalgae degraders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metagenomic insights into inhibition of soil microbial carbon metabolism by phosphorus limitation during vegetation succession. Introduction into natural environments shifts the gut microbiome of captivity-raised filter-feeding bivalves. Metagenomic and -transcriptomic analyses of microbial nitrogen transformation potential, and gene expression in Swiss lake sediments. Biological and experimental factors that define the effectiveness of microbial inoculation on plant traits: a meta-analysis. Rhizospheric miRNAs affect the plant microbiota.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1