Andrew M. Rodd, William M. Mawhinney, Harry Brumer
{"title":"生产木聚糖七糖 XXXG 的可扩展、无色谱的生物催化方法。","authors":"Andrew M. Rodd, William M. Mawhinney, Harry Brumer","doi":"10.1186/s13068-024-02563-9","DOIUrl":null,"url":null,"abstract":"<div><p>Xyloglucan oligosaccharides (XyGOs) are highly branched, complex carbohydrates with a variety of chemical and biotechnological applications. Due to the regular repeating pattern of sidechain substitution of the xyloglucan backbone, well-defined XyGOs are readily accessed for analytical and preparative purposes by specific hydrolysis of the polysaccharide with <i>endo</i>-glucanases. To broaden the application potential of XyGOs, we present here an optimized, scalable method to access large quantities of galactosylated XyGOs by treatment of the bulk agricultural by-product, tamarind kernel powder (TKP), with a highly specific <i>endo</i>-xyloglucanase at high-solids content. Subsequent β-galactosidase treatment reduced XyGO complexity to produce exclusively the branched heptasaccharide XXXG (Xyl<sub>3</sub>Glc<sub>4</sub>: [α-D-Xyl<i>p</i>-(1 → 6)]-β-D-Glc<i>p</i>-(1 → 4)-[α-D-Xyl<i>p</i>-(1 → 6)]-β-D-Glc<i>p</i>-(1 → 4)-[α-D-Xyl<i>p</i>-(1 → 6)]-β-D-Glc<i>p</i>-(1 → 4)-D-Glc<i>p</i>). The challenge of removing the co-product galactose was overcome by fermentation with baker’s yeast, thereby avoiding chromatography and other fractionation steps to yield highly pure XXXG. This simplified approach employs many of the core concepts of green chemistry and engineering, enables facile production of 100 g quantities of XyGOs and XXXG for laboratory use, and serves as a guide to further production scale-up for applications, including as prebiotics, plant growth effectors and elicitors, and building blocks for glycoconjugate synthesis.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02563-9","citationCount":"0","resultStr":"{\"title\":\"A scalable, chromatography-free, biocatalytic method to produce the xyloglucan heptasaccharide XXXG\",\"authors\":\"Andrew M. Rodd, William M. Mawhinney, Harry Brumer\",\"doi\":\"10.1186/s13068-024-02563-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Xyloglucan oligosaccharides (XyGOs) are highly branched, complex carbohydrates with a variety of chemical and biotechnological applications. Due to the regular repeating pattern of sidechain substitution of the xyloglucan backbone, well-defined XyGOs are readily accessed for analytical and preparative purposes by specific hydrolysis of the polysaccharide with <i>endo</i>-glucanases. To broaden the application potential of XyGOs, we present here an optimized, scalable method to access large quantities of galactosylated XyGOs by treatment of the bulk agricultural by-product, tamarind kernel powder (TKP), with a highly specific <i>endo</i>-xyloglucanase at high-solids content. Subsequent β-galactosidase treatment reduced XyGO complexity to produce exclusively the branched heptasaccharide XXXG (Xyl<sub>3</sub>Glc<sub>4</sub>: [α-D-Xyl<i>p</i>-(1 → 6)]-β-D-Glc<i>p</i>-(1 → 4)-[α-D-Xyl<i>p</i>-(1 → 6)]-β-D-Glc<i>p</i>-(1 → 4)-[α-D-Xyl<i>p</i>-(1 → 6)]-β-D-Glc<i>p</i>-(1 → 4)-D-Glc<i>p</i>). The challenge of removing the co-product galactose was overcome by fermentation with baker’s yeast, thereby avoiding chromatography and other fractionation steps to yield highly pure XXXG. This simplified approach employs many of the core concepts of green chemistry and engineering, enables facile production of 100 g quantities of XyGOs and XXXG for laboratory use, and serves as a guide to further production scale-up for applications, including as prebiotics, plant growth effectors and elicitors, and building blocks for glycoconjugate synthesis.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02563-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-024-02563-9\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02563-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A scalable, chromatography-free, biocatalytic method to produce the xyloglucan heptasaccharide XXXG
Xyloglucan oligosaccharides (XyGOs) are highly branched, complex carbohydrates with a variety of chemical and biotechnological applications. Due to the regular repeating pattern of sidechain substitution of the xyloglucan backbone, well-defined XyGOs are readily accessed for analytical and preparative purposes by specific hydrolysis of the polysaccharide with endo-glucanases. To broaden the application potential of XyGOs, we present here an optimized, scalable method to access large quantities of galactosylated XyGOs by treatment of the bulk agricultural by-product, tamarind kernel powder (TKP), with a highly specific endo-xyloglucanase at high-solids content. Subsequent β-galactosidase treatment reduced XyGO complexity to produce exclusively the branched heptasaccharide XXXG (Xyl3Glc4: [α-D-Xylp-(1 → 6)]-β-D-Glcp-(1 → 4)-[α-D-Xylp-(1 → 6)]-β-D-Glcp-(1 → 4)-[α-D-Xylp-(1 → 6)]-β-D-Glcp-(1 → 4)-D-Glcp). The challenge of removing the co-product galactose was overcome by fermentation with baker’s yeast, thereby avoiding chromatography and other fractionation steps to yield highly pure XXXG. This simplified approach employs many of the core concepts of green chemistry and engineering, enables facile production of 100 g quantities of XyGOs and XXXG for laboratory use, and serves as a guide to further production scale-up for applications, including as prebiotics, plant growth effectors and elicitors, and building blocks for glycoconjugate synthesis.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis