用于个性化多模态喜剧实验的交互式机器人

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Entertainment Computing Pub Date : 2024-08-14 DOI:10.1016/j.entcom.2024.100874
K. Ashok , P. Anu , K.C. Rajheshwari , R.V.S. Lalitha , Ravi Kumar Tata , A. Kavitha
{"title":"用于个性化多模态喜剧实验的交互式机器人","authors":"K. Ashok ,&nbsp;P. Anu ,&nbsp;K.C. Rajheshwari ,&nbsp;R.V.S. Lalitha ,&nbsp;Ravi Kumar Tata ,&nbsp;A. Kavitha","doi":"10.1016/j.entcom.2024.100874","DOIUrl":null,"url":null,"abstract":"<div><p>This research proposes a novel system for personalising humour delivery using interactive robots with AI, natural language processing, and human-robot interaction technologies. The robots can adapt the multimodal content of jokes tactically now and strategically over time based on recording and analyzing each user’s subjective emotional reactions. The study evaluated pragmatic aspects of timing and framing jokes by having the robots try different “comeback tactics” and observing audience response. An ANOVA analysis revealed six distinct response categories. 78 % of participants positively rated the personalized robot comedy across the six scenarios. However, when both robot comedians took a negative tone, only 23 % approved (p &lt; 0.001). Interestingly, audiences validated the robot comedian’s performance (89 % approval) more than the human comedian (54 % approval), a statistically significant difference (p &lt; 0.01). These findings shed light on ideal characteristics for effective human-robot comedy interactions, highlighting the importance of topicality, maintaining a generally positive mood, and the unique strengths of robot performers. The study paves the way for further optimization of personalized, adaptive robot humour systems leveraging multimodal AI capabilities to enhance entertainment experiences tailored to individuals.</p></div>","PeriodicalId":55997,"journal":{"name":"Entertainment Computing","volume":"52 ","pages":"Article 100874"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive robots for personalised multimodal comedy experiments\",\"authors\":\"K. Ashok ,&nbsp;P. Anu ,&nbsp;K.C. Rajheshwari ,&nbsp;R.V.S. Lalitha ,&nbsp;Ravi Kumar Tata ,&nbsp;A. Kavitha\",\"doi\":\"10.1016/j.entcom.2024.100874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research proposes a novel system for personalising humour delivery using interactive robots with AI, natural language processing, and human-robot interaction technologies. The robots can adapt the multimodal content of jokes tactically now and strategically over time based on recording and analyzing each user’s subjective emotional reactions. The study evaluated pragmatic aspects of timing and framing jokes by having the robots try different “comeback tactics” and observing audience response. An ANOVA analysis revealed six distinct response categories. 78 % of participants positively rated the personalized robot comedy across the six scenarios. However, when both robot comedians took a negative tone, only 23 % approved (p &lt; 0.001). Interestingly, audiences validated the robot comedian’s performance (89 % approval) more than the human comedian (54 % approval), a statistically significant difference (p &lt; 0.01). These findings shed light on ideal characteristics for effective human-robot comedy interactions, highlighting the importance of topicality, maintaining a generally positive mood, and the unique strengths of robot performers. The study paves the way for further optimization of personalized, adaptive robot humour systems leveraging multimodal AI capabilities to enhance entertainment experiences tailored to individuals.</p></div>\",\"PeriodicalId\":55997,\"journal\":{\"name\":\"Entertainment Computing\",\"volume\":\"52 \",\"pages\":\"Article 100874\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entertainment Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875952124002428\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entertainment Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875952124002428","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究提出了一种利用人工智能、自然语言处理和人机交互技术的交互式机器人进行个性化幽默传播的新型系统。根据对每个用户主观情绪反应的记录和分析,机器人可以对笑话的多模态内容进行战术性调整,并随着时间的推移进行战略性调整。研究通过让机器人尝试不同的 "回击策略 "并观察观众的反应,评估了笑话的时机和框架的实用性。方差分析显示了六个不同的反应类别。在这六种情况下,78% 的参与者对个性化机器人喜剧给予了积极评价。然而,当两个机器人喜剧演员都采取负面语气时,只有 23% 的人表示赞同(p < 0.001)。有趣的是,受众对机器人喜剧演员表演的认可度(89%)高于人类喜剧演员(54%),差异具有统计学意义(p <0.01)。这些发现揭示了人类与机器人喜剧互动有效的理想特征,强调了话题性、保持总体积极情绪以及机器人表演者独特优势的重要性。这项研究为进一步优化利用多模态人工智能能力的个性化、自适应机器人幽默系统铺平了道路,以增强适合个人的娱乐体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interactive robots for personalised multimodal comedy experiments

This research proposes a novel system for personalising humour delivery using interactive robots with AI, natural language processing, and human-robot interaction technologies. The robots can adapt the multimodal content of jokes tactically now and strategically over time based on recording and analyzing each user’s subjective emotional reactions. The study evaluated pragmatic aspects of timing and framing jokes by having the robots try different “comeback tactics” and observing audience response. An ANOVA analysis revealed six distinct response categories. 78 % of participants positively rated the personalized robot comedy across the six scenarios. However, when both robot comedians took a negative tone, only 23 % approved (p < 0.001). Interestingly, audiences validated the robot comedian’s performance (89 % approval) more than the human comedian (54 % approval), a statistically significant difference (p < 0.01). These findings shed light on ideal characteristics for effective human-robot comedy interactions, highlighting the importance of topicality, maintaining a generally positive mood, and the unique strengths of robot performers. The study paves the way for further optimization of personalized, adaptive robot humour systems leveraging multimodal AI capabilities to enhance entertainment experiences tailored to individuals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entertainment Computing
Entertainment Computing Computer Science-Human-Computer Interaction
CiteScore
5.90
自引率
7.10%
发文量
66
期刊介绍: Entertainment Computing publishes original, peer-reviewed research articles and serves as a forum for stimulating and disseminating innovative research ideas, emerging technologies, empirical investigations, state-of-the-art methods and tools in all aspects of digital entertainment, new media, entertainment computing, gaming, robotics, toys and applications among researchers, engineers, social scientists, artists and practitioners. Theoretical, technical, empirical, survey articles and case studies are all appropriate to the journal.
期刊最新文献
A comparative analysis of game experience in treadmill running applications Revenue effects of Denuvo digital rights management on PC video games The impact of performance degree on players: Exploring player enjoyment and engagement in the dynamic of game process Eight types of video game experience Exploring music-based attachment to video games through affect expressions in written memories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1