{"title":"空间异质环境中的血吸虫病数学模型","authors":"Franck Eric Thepi Nkuimeni , Berge Tsanou","doi":"10.1016/j.rinam.2024.100488","DOIUrl":null,"url":null,"abstract":"<div><p>Schistosomiasis is classified by WHO as a neglected tropical disease. Recent research works have shown that large-scale development projects involving massive population displacement and water irrigation, such as the construction of dams, lakes, and the development of agricultural areas, favour the proliferation of bilharzia. These observations motivate us to propose a reaction–diffusion model to assess the role of the displacements of humans, snails, cercaria, miracidia in the transmission dynamics of Schistosomiasis. The model incorporates a general non-linear contact functions and density-dependent parameters. The aim is to better understanding the role of spatial interactions on the spread of Schistosomiasis, in order to propose appropriate recommendations for the control of that silent threat. We characterize the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of the model. The uniform persistence theory, the maximum principle are used to conduct an in-depth analysis of both the homogeneous and heterogeneous models. Theoretical results are illustrated through numerical simulations.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100488"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259003742400058X/pdfft?md5=e857e903b9525a96f507d65c9af41c26&pid=1-s2.0-S259003742400058X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Schistosomiasis mathematical model in a spatially heterogeneous environment\",\"authors\":\"Franck Eric Thepi Nkuimeni , Berge Tsanou\",\"doi\":\"10.1016/j.rinam.2024.100488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Schistosomiasis is classified by WHO as a neglected tropical disease. Recent research works have shown that large-scale development projects involving massive population displacement and water irrigation, such as the construction of dams, lakes, and the development of agricultural areas, favour the proliferation of bilharzia. These observations motivate us to propose a reaction–diffusion model to assess the role of the displacements of humans, snails, cercaria, miracidia in the transmission dynamics of Schistosomiasis. The model incorporates a general non-linear contact functions and density-dependent parameters. The aim is to better understanding the role of spatial interactions on the spread of Schistosomiasis, in order to propose appropriate recommendations for the control of that silent threat. We characterize the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of the model. The uniform persistence theory, the maximum principle are used to conduct an in-depth analysis of both the homogeneous and heterogeneous models. Theoretical results are illustrated through numerical simulations.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"23 \",\"pages\":\"Article 100488\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259003742400058X/pdfft?md5=e857e903b9525a96f507d65c9af41c26&pid=1-s2.0-S259003742400058X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259003742400058X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259003742400058X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Schistosomiasis mathematical model in a spatially heterogeneous environment
Schistosomiasis is classified by WHO as a neglected tropical disease. Recent research works have shown that large-scale development projects involving massive population displacement and water irrigation, such as the construction of dams, lakes, and the development of agricultural areas, favour the proliferation of bilharzia. These observations motivate us to propose a reaction–diffusion model to assess the role of the displacements of humans, snails, cercaria, miracidia in the transmission dynamics of Schistosomiasis. The model incorporates a general non-linear contact functions and density-dependent parameters. The aim is to better understanding the role of spatial interactions on the spread of Schistosomiasis, in order to propose appropriate recommendations for the control of that silent threat. We characterize the basic reproduction number of the model. The uniform persistence theory, the maximum principle are used to conduct an in-depth analysis of both the homogeneous and heterogeneous models. Theoretical results are illustrated through numerical simulations.