Nyeong-Ho Shin, Seon-Ho Lee, Jinwon Ko, Chang-Su Kim
{"title":"基于顺序学习的图像裁剪","authors":"Nyeong-Ho Shin, Seon-Ho Lee, Jinwon Ko, Chang-Su Kim","doi":"10.1016/j.jvcir.2024.104253","DOIUrl":null,"url":null,"abstract":"<div><p>A novel approach to image cropping, called crop region comparator (CRC), is proposed in this paper, which learns ordering relationships between aesthetic qualities of different crop regions. CRC employs the single-region refinement (SR) module and the inter-region correlation (IC) module. First, we design the SR module to identify essential information in an original image and consider the composition of each crop candidate. Thus, the SR module helps CRC to adaptively find the best crop region according to the essential information. Second, we develop the IC module, which aggregates the information across two crop candidates to analyze their differences effectively and estimate their ordering relationship reliably. Then, we decide the crop region based on the relative aesthetic scores of all crop candidates, computed by comparing them in a pairwise manner. Extensive experimental results demonstrate that the proposed CRC algorithm outperforms existing image cropping techniques on various datasets.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"103 ","pages":"Article 104253"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image cropping based on order learning\",\"authors\":\"Nyeong-Ho Shin, Seon-Ho Lee, Jinwon Ko, Chang-Su Kim\",\"doi\":\"10.1016/j.jvcir.2024.104253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel approach to image cropping, called crop region comparator (CRC), is proposed in this paper, which learns ordering relationships between aesthetic qualities of different crop regions. CRC employs the single-region refinement (SR) module and the inter-region correlation (IC) module. First, we design the SR module to identify essential information in an original image and consider the composition of each crop candidate. Thus, the SR module helps CRC to adaptively find the best crop region according to the essential information. Second, we develop the IC module, which aggregates the information across two crop candidates to analyze their differences effectively and estimate their ordering relationship reliably. Then, we decide the crop region based on the relative aesthetic scores of all crop candidates, computed by comparing them in a pairwise manner. Extensive experimental results demonstrate that the proposed CRC algorithm outperforms existing image cropping techniques on various datasets.</p></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"103 \",\"pages\":\"Article 104253\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320324002098\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002098","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种新颖的图像裁剪方法,称为裁剪区域比较器(CRC),它可以学习不同裁剪区域美学品质之间的排序关系。CRC 采用单区域细化(SR)模块和区域间关联(IC)模块。首先,我们设计了 SR 模块来识别原始图像中的基本信息,并考虑每个候选作物的构成。因此,SR 模块可帮助 CRC 根据基本信息自适应地找到最佳作物区域。其次,我们开发了 IC 模块,该模块汇总两个候选作物的信息,以有效分析它们之间的差异,并可靠地估计它们之间的排序关系。然后,我们根据所有候选作物的相对美学分数来决定作物区域,该分数是通过成对比较的方式计算得出的。广泛的实验结果表明,在各种数据集上,所提出的 CRC 算法优于现有的图像裁剪技术。
A novel approach to image cropping, called crop region comparator (CRC), is proposed in this paper, which learns ordering relationships between aesthetic qualities of different crop regions. CRC employs the single-region refinement (SR) module and the inter-region correlation (IC) module. First, we design the SR module to identify essential information in an original image and consider the composition of each crop candidate. Thus, the SR module helps CRC to adaptively find the best crop region according to the essential information. Second, we develop the IC module, which aggregates the information across two crop candidates to analyze their differences effectively and estimate their ordering relationship reliably. Then, we decide the crop region based on the relative aesthetic scores of all crop candidates, computed by comparing them in a pairwise manner. Extensive experimental results demonstrate that the proposed CRC algorithm outperforms existing image cropping techniques on various datasets.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.