无定形玻璃态聚合物在大应变扭转下的剪切带发展分析

IF 4.4 2区 工程技术 Q1 MECHANICS European Journal of Mechanics A-Solids Pub Date : 2024-08-08 DOI:10.1016/j.euromechsol.2024.105415
Kaixing Li , Wujiao Xu , Peidong Wu , Yonggang Liu
{"title":"无定形玻璃态聚合物在大应变扭转下的剪切带发展分析","authors":"Kaixing Li ,&nbsp;Wujiao Xu ,&nbsp;Peidong Wu ,&nbsp;Yonggang Liu","doi":"10.1016/j.euromechsol.2024.105415","DOIUrl":null,"url":null,"abstract":"<div><p>Unlike the shear band development of metals generally regarded as the precursor to failure, the shear banding process in amorphous glassy polymers is known to influence both the strengthening and fracturing behaviors. Complementary to the previous experimental work in the literature on the shear band development under torsion under limited cases, the finite element (FE) analysis has been conducted to investigate the general shear banding behaviors in terms of the initiation and propagation in more detail. The FE model has been established by incorporating the Boyce-Parks-Argon (BPA) constitutive model with the full-network modification via a user material subroutine in ABAQUS. A series of nondimensional quantities were used to discuss the mesh sensitivity and the effects of predefined imperfections, specimen geometry, and torsion mode. Besides, by altering the extents of the intrinsic material softening and the strain hardening, the shear banding behaviors of typical materials under typical temperature and strain rate conditions are equivalently investigated. The validity of the simulation has been qualitatively validated by directly comparing with the experimental results from the literature.</p></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"108 ","pages":"Article 105415"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis on shear band development under large strain torsion of amorphous glassy polymers\",\"authors\":\"Kaixing Li ,&nbsp;Wujiao Xu ,&nbsp;Peidong Wu ,&nbsp;Yonggang Liu\",\"doi\":\"10.1016/j.euromechsol.2024.105415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Unlike the shear band development of metals generally regarded as the precursor to failure, the shear banding process in amorphous glassy polymers is known to influence both the strengthening and fracturing behaviors. Complementary to the previous experimental work in the literature on the shear band development under torsion under limited cases, the finite element (FE) analysis has been conducted to investigate the general shear banding behaviors in terms of the initiation and propagation in more detail. The FE model has been established by incorporating the Boyce-Parks-Argon (BPA) constitutive model with the full-network modification via a user material subroutine in ABAQUS. A series of nondimensional quantities were used to discuss the mesh sensitivity and the effects of predefined imperfections, specimen geometry, and torsion mode. Besides, by altering the extents of the intrinsic material softening and the strain hardening, the shear banding behaviors of typical materials under typical temperature and strain rate conditions are equivalently investigated. The validity of the simulation has been qualitatively validated by directly comparing with the experimental results from the literature.</p></div>\",\"PeriodicalId\":50483,\"journal\":{\"name\":\"European Journal of Mechanics A-Solids\",\"volume\":\"108 \",\"pages\":\"Article 105415\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics A-Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997753824001955\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753824001955","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

一般认为金属的剪切带发展是导致破坏的前兆,与此不同的是,无定形玻璃态聚合物的剪切带发展过程会同时影响强化和断裂行为。作为对以往文献中关于有限情况下扭转剪切带发展的实验研究的补充,我们进行了有限元(FE)分析,以更详细地研究剪切带在起始和传播方面的一般行为。有限元模型是通过 ABAQUS 中的一个用户材料子程序,将 Boyce-Parks-Argon (BPA) 构成模型与全网络修改相结合而建立的。使用一系列非尺寸量来讨论网格敏感性以及预定义缺陷、试样几何形状和扭转模式的影响。此外,通过改变材料固有软化和应变硬化的程度,等效地研究了典型材料在典型温度和应变速率条件下的剪切带行为。通过与文献中的实验结果直接比较,对模拟的有效性进行了定性验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis on shear band development under large strain torsion of amorphous glassy polymers

Unlike the shear band development of metals generally regarded as the precursor to failure, the shear banding process in amorphous glassy polymers is known to influence both the strengthening and fracturing behaviors. Complementary to the previous experimental work in the literature on the shear band development under torsion under limited cases, the finite element (FE) analysis has been conducted to investigate the general shear banding behaviors in terms of the initiation and propagation in more detail. The FE model has been established by incorporating the Boyce-Parks-Argon (BPA) constitutive model with the full-network modification via a user material subroutine in ABAQUS. A series of nondimensional quantities were used to discuss the mesh sensitivity and the effects of predefined imperfections, specimen geometry, and torsion mode. Besides, by altering the extents of the intrinsic material softening and the strain hardening, the shear banding behaviors of typical materials under typical temperature and strain rate conditions are equivalently investigated. The validity of the simulation has been qualitatively validated by directly comparing with the experimental results from the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
期刊最新文献
Atomistic investigation of interface adherence mechanism of structural indenter nanocoining single crystal aluminum Research on mechanical behavior of particle/matrix interface in composite solid propellant Vibration suppression of suspended cables with three-to-one internal resonances via time-delay feedback Determination of material constants of piezoceramics using genetic algorithm Vibration response of nanobeams subjected to random reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1