自组织代用辅助非支配排序差分进化论

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm and Evolutionary Computation Pub Date : 2024-08-20 DOI:10.1016/j.swevo.2024.101703
Aluizio F.R. Araújo , Lucas R.C. Farias , Antônio R.C. Gonçalves
{"title":"自组织代用辅助非支配排序差分进化论","authors":"Aluizio F.R. Araújo ,&nbsp;Lucas R.C. Farias ,&nbsp;Antônio R.C. Gonçalves","doi":"10.1016/j.swevo.2024.101703","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-objective optimization problems (MOPs) involve optimizing multiple conflicting objectives simultaneously, resulting in a set of Pareto optimal solutions. Due to the high computational or financial cost associated with evaluating fitness, expensive multi-objective optimization problems (EMOPs) further complicate the optimization process. Surrogate-assisted evolutionary algorithms (SAEAs) have emerged as a promising approach to address EMOPs by substituting costly evaluations with computationally efficient surrogate models. This paper introduces the self-organizing surrogate-assisted non-dominated sorting differential evolution (SSDE), which uses surrogate model based on a self-organizing map (SOM) to approximate the fitness function. SSDE offers advantages such as reduced computational cost, improved accuracy, and the speed of enhanced convergence. The SOM-based surrogate models effectively capture the underlying structure of the Pareto optimal set and Pareto optimal front, leading to superior approximations of the fitness function. Experimental results on benchmark functions and real-world problems, including Model-Free Adaptive Control (MFAC) and the Yagi-Uda Antenna design, demonstrate the competitiveness and efficiency of SSDE compared to other algorithms.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101703"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-organizing surrogate-assisted non-dominated sorting differential evolution\",\"authors\":\"Aluizio F.R. Araújo ,&nbsp;Lucas R.C. Farias ,&nbsp;Antônio R.C. Gonçalves\",\"doi\":\"10.1016/j.swevo.2024.101703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-objective optimization problems (MOPs) involve optimizing multiple conflicting objectives simultaneously, resulting in a set of Pareto optimal solutions. Due to the high computational or financial cost associated with evaluating fitness, expensive multi-objective optimization problems (EMOPs) further complicate the optimization process. Surrogate-assisted evolutionary algorithms (SAEAs) have emerged as a promising approach to address EMOPs by substituting costly evaluations with computationally efficient surrogate models. This paper introduces the self-organizing surrogate-assisted non-dominated sorting differential evolution (SSDE), which uses surrogate model based on a self-organizing map (SOM) to approximate the fitness function. SSDE offers advantages such as reduced computational cost, improved accuracy, and the speed of enhanced convergence. The SOM-based surrogate models effectively capture the underlying structure of the Pareto optimal set and Pareto optimal front, leading to superior approximations of the fitness function. Experimental results on benchmark functions and real-world problems, including Model-Free Adaptive Control (MFAC) and the Yagi-Uda Antenna design, demonstrate the competitiveness and efficiency of SSDE compared to other algorithms.</p></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"91 \",\"pages\":\"Article 101703\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224002414\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002414","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

多目标优化问题(MOPs)涉及同时优化多个相互冲突的目标,从而产生一组帕累托最优解。由于评估合适度的计算或财务成本较高,昂贵的多目标优化问题(EMOPs)使优化过程更加复杂。代用辅助进化算法(SAEAs)通过用计算效率高的代用模型代替昂贵的评估,已成为解决多目标优化问题的一种有前途的方法。本文介绍了自组织代用辅助非支配排序差分进化算法(SSDE),它使用基于自组织图(SOM)的代用模型来近似拟合函数。SSDE 具有降低计算成本、提高准确性和增强收敛速度等优势。基于 SOM 的代用模型能有效捕捉帕累托最优集和帕累托最优前沿的底层结构,从而获得更优越的拟合函数近似值。在基准函数和实际问题(包括无模型自适应控制(MFAC)和 Yagi-Uda 天线设计)上的实验结果表明,与其他算法相比,SSDE 具有很强的竞争力和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-organizing surrogate-assisted non-dominated sorting differential evolution

Multi-objective optimization problems (MOPs) involve optimizing multiple conflicting objectives simultaneously, resulting in a set of Pareto optimal solutions. Due to the high computational or financial cost associated with evaluating fitness, expensive multi-objective optimization problems (EMOPs) further complicate the optimization process. Surrogate-assisted evolutionary algorithms (SAEAs) have emerged as a promising approach to address EMOPs by substituting costly evaluations with computationally efficient surrogate models. This paper introduces the self-organizing surrogate-assisted non-dominated sorting differential evolution (SSDE), which uses surrogate model based on a self-organizing map (SOM) to approximate the fitness function. SSDE offers advantages such as reduced computational cost, improved accuracy, and the speed of enhanced convergence. The SOM-based surrogate models effectively capture the underlying structure of the Pareto optimal set and Pareto optimal front, leading to superior approximations of the fitness function. Experimental results on benchmark functions and real-world problems, including Model-Free Adaptive Control (MFAC) and the Yagi-Uda Antenna design, demonstrate the competitiveness and efficiency of SSDE compared to other algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
期刊最新文献
A survey on vehicle–drone cooperative delivery operations optimization: Models, methods, and future research directions Bayesian network structure learning based on discrete artificial jellyfish search: Leveraging scoring and graphical properties A learning-based memetic algorithm for energy-efficient distributed flow-shop scheduling with preventive maintenance Provable space discretization based evolutionary search for scalable multi-objective security games Multi-Objective Optimization for Distributed Generator and Shunt Capacitor Placement Considering Voltage-Dependent Nonlinear Load Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1