解开植物与鸟类关系的复杂性:从单层网络到多层网络的视角

IF 1.8 4区 环境科学与生态学 Q2 BIODIVERSITY CONSERVATION Food Webs Pub Date : 2024-08-17 DOI:10.1016/j.fooweb.2024.e00359
Issaac Azrrael Teodosio Faustino , Ian MacGregor-Fors , Miguel Jácome Flores , Roger Guevara , Rafael Villegas-Patraca , Wesley Dáttilo
{"title":"解开植物与鸟类关系的复杂性:从单层网络到多层网络的视角","authors":"Issaac Azrrael Teodosio Faustino ,&nbsp;Ian MacGregor-Fors ,&nbsp;Miguel Jácome Flores ,&nbsp;Roger Guevara ,&nbsp;Rafael Villegas-Patraca ,&nbsp;Wesley Dáttilo","doi":"10.1016/j.fooweb.2024.e00359","DOIUrl":null,"url":null,"abstract":"<div><p>Most plant-bird interaction research employing complex ecological networks focuses on pollination and seed dispersal interactions. However, birds and plants are immersed in a great variety and complexity of direct and indirect relationships. Therefore, the use of multilayer networks (i.e., species interaction networks involving different types of interactions) could provide new insights into the ecological and coevolutionary dynamics of plant-bird relationships. Here, we used a multilayer network approach to determine how a bird-plant interaction network involving different types of interactions (i.e., foraging for invertebrates on plants, frugivory, nectarivory, and perching) is organized in a peri-urban Mexican cloud forest. Moreover, we added information about the interactive roles of the winter migratory and resident birds in the multilayer network. In general, we found that the bird-plant multilayer network exhibits modular but a non-nested structure. We also observed that interactions involving perching and foraging for invertebrates on plants are more frequent than frugivory and nectarivory. Moreover, just a small proportion of birds and plant species were important to the network organization and for connecting different interaction types. In this case, we observed that only two bird species, <em>Cardellina pusilla</em> (Parulidae) and <em>Dumetella carolinesis</em> (Mimidae), and the plant species <em>Telanthophora grandifolia</em> (Asteraceae) and <em>Platanus mexicanus</em> (Platanaceae) presented higher centrality values (i.e., an interactive role). Finally, we found that betweenness values (i.e., the number of times a species acts as a bridge along the shortest path between two species) and network structure's contributions are similar for both migratory and resident bird species. Our results highlight the importance of key interacting species that connect other interacting species for the preservation of community cohesion and to the persistence of species-rich assemblages.</p></div>","PeriodicalId":38084,"journal":{"name":"Food Webs","volume":"40 ","pages":"Article e00359"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disentangling the complexity of plant-bird relationships: From monolayer to multilayer network perspectives\",\"authors\":\"Issaac Azrrael Teodosio Faustino ,&nbsp;Ian MacGregor-Fors ,&nbsp;Miguel Jácome Flores ,&nbsp;Roger Guevara ,&nbsp;Rafael Villegas-Patraca ,&nbsp;Wesley Dáttilo\",\"doi\":\"10.1016/j.fooweb.2024.e00359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most plant-bird interaction research employing complex ecological networks focuses on pollination and seed dispersal interactions. However, birds and plants are immersed in a great variety and complexity of direct and indirect relationships. Therefore, the use of multilayer networks (i.e., species interaction networks involving different types of interactions) could provide new insights into the ecological and coevolutionary dynamics of plant-bird relationships. Here, we used a multilayer network approach to determine how a bird-plant interaction network involving different types of interactions (i.e., foraging for invertebrates on plants, frugivory, nectarivory, and perching) is organized in a peri-urban Mexican cloud forest. Moreover, we added information about the interactive roles of the winter migratory and resident birds in the multilayer network. In general, we found that the bird-plant multilayer network exhibits modular but a non-nested structure. We also observed that interactions involving perching and foraging for invertebrates on plants are more frequent than frugivory and nectarivory. Moreover, just a small proportion of birds and plant species were important to the network organization and for connecting different interaction types. In this case, we observed that only two bird species, <em>Cardellina pusilla</em> (Parulidae) and <em>Dumetella carolinesis</em> (Mimidae), and the plant species <em>Telanthophora grandifolia</em> (Asteraceae) and <em>Platanus mexicanus</em> (Platanaceae) presented higher centrality values (i.e., an interactive role). Finally, we found that betweenness values (i.e., the number of times a species acts as a bridge along the shortest path between two species) and network structure's contributions are similar for both migratory and resident bird species. Our results highlight the importance of key interacting species that connect other interacting species for the preservation of community cohesion and to the persistence of species-rich assemblages.</p></div>\",\"PeriodicalId\":38084,\"journal\":{\"name\":\"Food Webs\",\"volume\":\"40 \",\"pages\":\"Article e00359\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Webs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352249624000259\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Webs","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352249624000259","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

大多数利用复杂生态网络进行的植物与鸟类相互作用研究都集中在授粉和种子传播的相互作用上。然而,鸟类和植物之间的直接和间接关系种类繁多、错综复杂。因此,使用多层网络(即涉及不同类型相互作用的物种相互作用网络)可以为植物-鸟类关系的生态和共同进化动态提供新的见解。在此,我们使用多层网络方法来确定在墨西哥城市周边云雾林中,涉及不同类型相互作用(即在植物上觅食无脊椎动物、觅食、采蜜和栖息)的鸟类-植物相互作用网络是如何组织的。此外,我们还补充了冬候鸟和留鸟在多层网络中互动作用的信息。总的来说,我们发现鸟类-植物多层网络呈现出模块化但非嵌套的结构。我们还观察到,与觅食和采蜜相比,鸟类在植物上栖息和觅食无脊椎动物的互动更为频繁。此外,只有一小部分鸟类和植物物种对网络的组织和连接不同类型的相互作用非常重要。在这种情况下,我们观察到只有两种鸟类,Cardellina pusilla(鹦鹉螺科)和Dumetella carolinesis(绣线菊科),以及植物物种Telanthophora grandifolia(菊科)和Platanus mexicanus(桔梗科)呈现出较高的中心度值(即交互作用)。最后,我们发现迁徙鸟类和留鸟物种的介度值(即一个物种在两个物种之间的最短路径上充当桥梁的次数)和网络结构的贡献相似。我们的研究结果凸显了连接其他相互作用物种的关键相互作用物种对于保持群落凝聚力和丰富物种集合的持续性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Disentangling the complexity of plant-bird relationships: From monolayer to multilayer network perspectives

Most plant-bird interaction research employing complex ecological networks focuses on pollination and seed dispersal interactions. However, birds and plants are immersed in a great variety and complexity of direct and indirect relationships. Therefore, the use of multilayer networks (i.e., species interaction networks involving different types of interactions) could provide new insights into the ecological and coevolutionary dynamics of plant-bird relationships. Here, we used a multilayer network approach to determine how a bird-plant interaction network involving different types of interactions (i.e., foraging for invertebrates on plants, frugivory, nectarivory, and perching) is organized in a peri-urban Mexican cloud forest. Moreover, we added information about the interactive roles of the winter migratory and resident birds in the multilayer network. In general, we found that the bird-plant multilayer network exhibits modular but a non-nested structure. We also observed that interactions involving perching and foraging for invertebrates on plants are more frequent than frugivory and nectarivory. Moreover, just a small proportion of birds and plant species were important to the network organization and for connecting different interaction types. In this case, we observed that only two bird species, Cardellina pusilla (Parulidae) and Dumetella carolinesis (Mimidae), and the plant species Telanthophora grandifolia (Asteraceae) and Platanus mexicanus (Platanaceae) presented higher centrality values (i.e., an interactive role). Finally, we found that betweenness values (i.e., the number of times a species acts as a bridge along the shortest path between two species) and network structure's contributions are similar for both migratory and resident bird species. Our results highlight the importance of key interacting species that connect other interacting species for the preservation of community cohesion and to the persistence of species-rich assemblages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Webs
Food Webs Environmental Science-Ecology
CiteScore
2.80
自引率
5.90%
发文量
42
期刊最新文献
Between mosquitoes and stoneflies: Observation of Plecoptera nymphs preying on chironomid larvae (Diptera) Diet of the Arabian collared kingfisher (Todiramphus chloris kalbaensis): Insights from trail cameras and regurgitation pellets Phoresy and interactions between Scotocryptus beetles and stingless bees Predation of Gripopteryx sp. (Plecoptera: Gripopterygidae) by Argia claussenii Selys, 1865 (Odonata: Coenagrionidae) in Campo Rupestre, Minas Gerais Hygrophilous springtails (Arthropoda: Collembola) with different diets are a potential source of eicosapentaenoic fatty acid for terrestrial consumers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1