利用失真感知学习从单幅全向图像中恢复结构

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-08-08 DOI:10.1016/j.jksuci.2024.102151
Ming Meng , Yi Zhou , Dongshi Zuo , Zhaoxin Li , Zhong Zhou
{"title":"利用失真感知学习从单幅全向图像中恢复结构","authors":"Ming Meng ,&nbsp;Yi Zhou ,&nbsp;Dongshi Zuo ,&nbsp;Zhaoxin Li ,&nbsp;Zhong Zhou","doi":"10.1016/j.jksuci.2024.102151","DOIUrl":null,"url":null,"abstract":"<div><p>Recovering structures from images with 180<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span> or 360<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span> FoV is pivotal in computer vision and computational photography, particularly for VR/AR/MR and autonomous robotics applications. Due to varying distortions and the complexity of indoor scenes, recovering flexible structures from a single image is challenging. We introduce OmniSRNet, a comprehensive deep learning framework that merges distortion-aware learning with bidirectional LSTM. Utilizing a curated dataset with optimized panorama and expanded fisheye images, our framework features a distortion-aware module (DAM) for extracting features and a horizontal and vertical step module (HVSM) of LSTM for contextual predictions. OmniSRNet excels in applications such as VR-based house viewing and MR-based video surveillance, achieving leading results on cuboid and non-cuboid datasets. The code and dataset can be accessed at <span><span>https://github.com/mmlph/OmniSRNet/</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 7","pages":"Article 102151"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002404/pdfft?md5=7e463774b7098668fef54fdff2ad3e21&pid=1-s2.0-S1319157824002404-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Structure recovery from single omnidirectional image with distortion-aware learning\",\"authors\":\"Ming Meng ,&nbsp;Yi Zhou ,&nbsp;Dongshi Zuo ,&nbsp;Zhaoxin Li ,&nbsp;Zhong Zhou\",\"doi\":\"10.1016/j.jksuci.2024.102151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recovering structures from images with 180<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span> or 360<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span> FoV is pivotal in computer vision and computational photography, particularly for VR/AR/MR and autonomous robotics applications. Due to varying distortions and the complexity of indoor scenes, recovering flexible structures from a single image is challenging. We introduce OmniSRNet, a comprehensive deep learning framework that merges distortion-aware learning with bidirectional LSTM. Utilizing a curated dataset with optimized panorama and expanded fisheye images, our framework features a distortion-aware module (DAM) for extracting features and a horizontal and vertical step module (HVSM) of LSTM for contextual predictions. OmniSRNet excels in applications such as VR-based house viewing and MR-based video surveillance, achieving leading results on cuboid and non-cuboid datasets. The code and dataset can be accessed at <span><span>https://github.com/mmlph/OmniSRNet/</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":\"36 7\",\"pages\":\"Article 102151\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002404/pdfft?md5=7e463774b7098668fef54fdff2ad3e21&pid=1-s2.0-S1319157824002404-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002404\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002404","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

从 180∘ 或 360∘ FoV 的图像中恢复结构是计算机视觉和计算摄影的关键,尤其是在 VR/AR/MR 和自主机器人应用中。由于室内场景的畸变和复杂性各不相同,从单张图像中恢复灵活的结构具有挑战性。我们介绍了 OmniSRNet,这是一种综合深度学习框架,它将失真感知学习与双向 LSTM 相结合。利用包含优化全景和扩展鱼眼图像的数据集,我们的框架具有用于提取特征的失真感知模块(DAM)和用于上下文预测的 LSTM 水平和垂直阶跃模块(HVSM)。OmniSRNet 在基于 VR 的房屋查看和基于 MR 的视频监控等应用中表现出色,在立方体和非立方体数据集上取得了领先的结果。代码和数据集可通过 https://github.com/mmlph/OmniSRNet/ 访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structure recovery from single omnidirectional image with distortion-aware learning

Recovering structures from images with 180 or 360 FoV is pivotal in computer vision and computational photography, particularly for VR/AR/MR and autonomous robotics applications. Due to varying distortions and the complexity of indoor scenes, recovering flexible structures from a single image is challenging. We introduce OmniSRNet, a comprehensive deep learning framework that merges distortion-aware learning with bidirectional LSTM. Utilizing a curated dataset with optimized panorama and expanded fisheye images, our framework features a distortion-aware module (DAM) for extracting features and a horizontal and vertical step module (HVSM) of LSTM for contextual predictions. OmniSRNet excels in applications such as VR-based house viewing and MR-based video surveillance, achieving leading results on cuboid and non-cuboid datasets. The code and dataset can be accessed at https://github.com/mmlph/OmniSRNet/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
期刊最新文献
Image stitching algorithm based on two-stage optimal seam line search CRNet: Cascaded Refinement Network for polyp segmentation Enhancing foreign exchange reserve security for central banks using Blockchain, FHE, and AWS Improving cache-enabled D2D communications using actor–critic networks over licensed and unlicensed spectrum L2-MA-CPABE: A ciphertext access control scheme integrating blockchain and off-chain computation with zero knowledge proof
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1