将传感、通信和功率传输融为一体:多用户波束成形设计

Ziqin Zhou;Xiaoyang Li;Guangxu Zhu;Jie Xu;Kaibin Huang;Shuguang Cui
{"title":"将传感、通信和功率传输融为一体:多用户波束成形设计","authors":"Ziqin Zhou;Xiaoyang Li;Guangxu Zhu;Jie Xu;Kaibin Huang;Shuguang Cui","doi":"10.1109/JSAC.2024.3413996","DOIUrl":null,"url":null,"abstract":"In the sixth-generation (6G) networks, massive low-power devices are expected to sense environment and deliver tremendous data. To enhance the radio resource efficiency, the integrated sensing and communication (ISAC) technique exploits the sensing and communication functionalities of signals, while the simultaneous wireless information and power transfer (SWIPT) techniques utilizes the same signals as the carriers for both information and power delivery. The further combination of ISAC and SWIPT leads to the advanced technology namely integrated sensing, communication, and power transfer (ISCPT). In this paper, a multi-user multiple-input multiple-output (MIMO) ISCPT system is considered, where a base station equipped with multiple antennas transmits messages to multiple information receivers (IRs), transfers power to multiple energy receivers (ERs), and senses a target simultaneously. The sensing target can be regarded as a point or an extended surface. When the locations of IRs and ERs are separated, the MIMO beamforming designs are optimized to improve the sensing performance while meeting the communication and power transfer requirements. The resultant non-convex optimization problems are solved based on a series of techniques including Schur complement transformation and rank reduction. Moreover, when the IRs and ERs are co-located, the power splitting factors are jointly optimized together with the beamformers to balance the performance of communication and power transfer. To better understand the performance of ISCPT, the target positioning problem is further investigated. Simulations are conducted to verify the effectiveness of our proposed designs, which also reveal a performance tradeoff among sensing, communication, and power transfer.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Sensing, Communication, and Power Transfer: Multiuser Beamforming Design\",\"authors\":\"Ziqin Zhou;Xiaoyang Li;Guangxu Zhu;Jie Xu;Kaibin Huang;Shuguang Cui\",\"doi\":\"10.1109/JSAC.2024.3413996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the sixth-generation (6G) networks, massive low-power devices are expected to sense environment and deliver tremendous data. To enhance the radio resource efficiency, the integrated sensing and communication (ISAC) technique exploits the sensing and communication functionalities of signals, while the simultaneous wireless information and power transfer (SWIPT) techniques utilizes the same signals as the carriers for both information and power delivery. The further combination of ISAC and SWIPT leads to the advanced technology namely integrated sensing, communication, and power transfer (ISCPT). In this paper, a multi-user multiple-input multiple-output (MIMO) ISCPT system is considered, where a base station equipped with multiple antennas transmits messages to multiple information receivers (IRs), transfers power to multiple energy receivers (ERs), and senses a target simultaneously. The sensing target can be regarded as a point or an extended surface. When the locations of IRs and ERs are separated, the MIMO beamforming designs are optimized to improve the sensing performance while meeting the communication and power transfer requirements. The resultant non-convex optimization problems are solved based on a series of techniques including Schur complement transformation and rank reduction. Moreover, when the IRs and ERs are co-located, the power splitting factors are jointly optimized together with the beamformers to balance the performance of communication and power transfer. To better understand the performance of ISCPT, the target positioning problem is further investigated. Simulations are conducted to verify the effectiveness of our proposed designs, which also reveal a performance tradeoff among sensing, communication, and power transfer.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10556683/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10556683/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在第六代(6G)网络中,大规模低功耗设备有望感知环境并传输大量数据。为了提高无线电资源效率,集成传感和通信(ISAC)技术利用了信号的传感和通信功能,而同步无线信息和功率传输(SWIPT)技术则利用相同的信号作为信息和功率传输的载体。ISAC 和 SWIPT 的进一步结合产生了先进的综合传感、通信和功率传输(ISCPT)技术。本文考虑的是一种多用户多输入多输出(MIMO)ISCPT 系统,在该系统中,配备多个天线的基站向多个信息接收器(IR)发送信息,向多个能量接收器(ER)传输功率,并同时感知目标。感知目标可以是一个点,也可以是一个扩展面。当 IR 和 ER 的位置分离时,需要优化 MIMO 波束成形设计,以提高传感性能,同时满足通信和功率传输要求。由此产生的非凸优化问题是基于一系列技术求解的,包括舒尔补码变换和秩缩减。此外,当 IR 和 ER 位于同一位置时,功率分配系数将与波束成形器共同优化,以平衡通信和功率传输性能。为了更好地理解 ISCPT 的性能,我们进一步研究了目标定位问题。仿真验证了我们提出的设计方案的有效性,同时也揭示了传感、通信和功率传输之间的性能权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating Sensing, Communication, and Power Transfer: Multiuser Beamforming Design
In the sixth-generation (6G) networks, massive low-power devices are expected to sense environment and deliver tremendous data. To enhance the radio resource efficiency, the integrated sensing and communication (ISAC) technique exploits the sensing and communication functionalities of signals, while the simultaneous wireless information and power transfer (SWIPT) techniques utilizes the same signals as the carriers for both information and power delivery. The further combination of ISAC and SWIPT leads to the advanced technology namely integrated sensing, communication, and power transfer (ISCPT). In this paper, a multi-user multiple-input multiple-output (MIMO) ISCPT system is considered, where a base station equipped with multiple antennas transmits messages to multiple information receivers (IRs), transfers power to multiple energy receivers (ERs), and senses a target simultaneously. The sensing target can be regarded as a point or an extended surface. When the locations of IRs and ERs are separated, the MIMO beamforming designs are optimized to improve the sensing performance while meeting the communication and power transfer requirements. The resultant non-convex optimization problems are solved based on a series of techniques including Schur complement transformation and rank reduction. Moreover, when the IRs and ERs are co-located, the power splitting factors are jointly optimized together with the beamformers to balance the performance of communication and power transfer. To better understand the performance of ISCPT, the target positioning problem is further investigated. Simulations are conducted to verify the effectiveness of our proposed designs, which also reveal a performance tradeoff among sensing, communication, and power transfer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Open Access Publishing Guest Editorial Positioning and Sensing Over Wireless Networks—Part II TechRxiv: Share Your Preprint Research With the World! IEEE Journal on Selected Areas in Communications Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1