基于 DQN 的大规模电动汽车充电调度方法

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2024-08-21 DOI:10.1007/s40747-024-01587-w
Yingnan Han, Tianyang Li, Qingzhu Wang
{"title":"基于 DQN 的大规模电动汽车充电调度方法","authors":"Yingnan Han, Tianyang Li, Qingzhu Wang","doi":"10.1007/s40747-024-01587-w","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses the challenge of large-scale electric vehicle (EV) charging scheduling during peak demand periods, such as holidays or rush hours. The growing EV industry has highlighted the shortcomings of current scheduling plans, which struggle to manage surge large-scale charging demands effectively, thus posing challenges to the EV charging management system. Deep reinforcement learning, known for its effectiveness in solving complex decision-making problems, holds promise for addressing this issue. To this end, we formulate the problem as a Markov decision process (MDP). We propose a deep Q-learning (DQN) based algorithm to improve EV charging service quality as well as minimizing average queueing times for EVs and average idling times for charging devices (CDs). In our proposed methodology, we design two types of states to encompass global scheduling information, and two types of rewards to reflect scheduling performance. Based on this designing, we developed three modules: a fine-grained feature extraction module for effectively extracting state features, an improved noise-based exploration module for thorough exploration of the solution space, and a dueling block for enhancing Q value evaluation. To assess the effectiveness of our proposal, we conduct three case studies within a complex urban scenario featuring 34 charging stations and 899 scheduled EVs. The results of these experiments demonstrate the advantages of our proposal, showcasing its superiority in effectively locating superior solutions compared to current methods in the literature, as well as its efficiency in generating feasible charging scheduling plans for large-scale EVs. The code and data are available by accessing the hyperlink: https://github.com/paperscodeyouneed/A-Noisy-Dueling-Architecture-for-Large-Scale-EV-ChargingScheduling/tree/main/EV%20Charging%20Scheduling.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"8 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DQN based approach for large-scale EVs charging scheduling\",\"authors\":\"Yingnan Han, Tianyang Li, Qingzhu Wang\",\"doi\":\"10.1007/s40747-024-01587-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper addresses the challenge of large-scale electric vehicle (EV) charging scheduling during peak demand periods, such as holidays or rush hours. The growing EV industry has highlighted the shortcomings of current scheduling plans, which struggle to manage surge large-scale charging demands effectively, thus posing challenges to the EV charging management system. Deep reinforcement learning, known for its effectiveness in solving complex decision-making problems, holds promise for addressing this issue. To this end, we formulate the problem as a Markov decision process (MDP). We propose a deep Q-learning (DQN) based algorithm to improve EV charging service quality as well as minimizing average queueing times for EVs and average idling times for charging devices (CDs). In our proposed methodology, we design two types of states to encompass global scheduling information, and two types of rewards to reflect scheduling performance. Based on this designing, we developed three modules: a fine-grained feature extraction module for effectively extracting state features, an improved noise-based exploration module for thorough exploration of the solution space, and a dueling block for enhancing Q value evaluation. To assess the effectiveness of our proposal, we conduct three case studies within a complex urban scenario featuring 34 charging stations and 899 scheduled EVs. The results of these experiments demonstrate the advantages of our proposal, showcasing its superiority in effectively locating superior solutions compared to current methods in the literature, as well as its efficiency in generating feasible charging scheduling plans for large-scale EVs. The code and data are available by accessing the hyperlink: https://github.com/paperscodeyouneed/A-Noisy-Dueling-Architecture-for-Large-Scale-EV-ChargingScheduling/tree/main/EV%20Charging%20Scheduling.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01587-w\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01587-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了在节假日或高峰时段等需求高峰期进行大规模电动汽车(EV)充电调度所面临的挑战。电动汽车行业的不断发展凸显了当前调度计划的不足,难以有效管理激增的大规模充电需求,从而给电动汽车充电管理系统带来了挑战。深度强化学习因其在解决复杂决策问题方面的有效性而闻名,有望解决这一问题。为此,我们将问题表述为马尔可夫决策过程(MDP)。我们提出了一种基于深度 Q-learning (DQN) 的算法,以提高电动汽车充电服务质量,并最大限度地减少电动汽车的平均排队时间和充电设备(CD)的平均空闲时间。在我们提出的方法中,我们设计了两类状态来包含全局调度信息,以及两类奖励来反映调度性能。在此基础上,我们开发了三个模块:用于有效提取状态特征的细粒度特征提取模块、用于彻底探索解空间的改进型基于噪声的探索模块,以及用于增强 Q 值评估的决斗模块。为了评估我们建议的有效性,我们在一个复杂的城市场景中进行了三个案例研究,该场景中有 34 个充电站和 899 辆预定电动汽车。这些实验结果证明了我们建议的优势,与目前文献中的方法相比,我们的建议在有效定位优秀解决方案方面更具优势,在为大规模电动汽车生成可行的充电调度计划方面也更有效率。代码和数据可通过以下超链接获取:https://github.com/paperscodeyouneed/A-Noisy-Dueling-Architecture-for-Large-Scale-EV-ChargingScheduling/tree/main/EV%20Charging%20Scheduling。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A DQN based approach for large-scale EVs charging scheduling

This paper addresses the challenge of large-scale electric vehicle (EV) charging scheduling during peak demand periods, such as holidays or rush hours. The growing EV industry has highlighted the shortcomings of current scheduling plans, which struggle to manage surge large-scale charging demands effectively, thus posing challenges to the EV charging management system. Deep reinforcement learning, known for its effectiveness in solving complex decision-making problems, holds promise for addressing this issue. To this end, we formulate the problem as a Markov decision process (MDP). We propose a deep Q-learning (DQN) based algorithm to improve EV charging service quality as well as minimizing average queueing times for EVs and average idling times for charging devices (CDs). In our proposed methodology, we design two types of states to encompass global scheduling information, and two types of rewards to reflect scheduling performance. Based on this designing, we developed three modules: a fine-grained feature extraction module for effectively extracting state features, an improved noise-based exploration module for thorough exploration of the solution space, and a dueling block for enhancing Q value evaluation. To assess the effectiveness of our proposal, we conduct three case studies within a complex urban scenario featuring 34 charging stations and 899 scheduled EVs. The results of these experiments demonstrate the advantages of our proposal, showcasing its superiority in effectively locating superior solutions compared to current methods in the literature, as well as its efficiency in generating feasible charging scheduling plans for large-scale EVs. The code and data are available by accessing the hyperlink: https://github.com/paperscodeyouneed/A-Noisy-Dueling-Architecture-for-Large-Scale-EV-ChargingScheduling/tree/main/EV%20Charging%20Scheduling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Large-scale multiobjective competitive swarm optimizer algorithm based on regional multidirectional search Towards fairness-aware multi-objective optimization Low-frequency spectral graph convolution networks with one-hop connections information for personalized tag recommendation A decentralized feedback-based consensus model considering the consistency maintenance and readability of probabilistic linguistic preference relations for large-scale group decision-making A dynamic preference recommendation model based on spatiotemporal knowledge graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1