Liana K Billings, Zhuqing Shi, Ashley J Mulford, Jun Wei, Huy Tran, Annabelle Ashworth, S Lilly Zheng, Henry M Dunnenberger, Peter J Hulick, Alan R Sanders, Jianfeng Xu
{"title":"在美国医疗保健系统的生物库中验证 GenProb-T1D 及其在区分糖尿病类型方面的临床用途。","authors":"Liana K Billings, Zhuqing Shi, Ashley J Mulford, Jun Wei, Huy Tran, Annabelle Ashworth, S Lilly Zheng, Henry M Dunnenberger, Peter J Hulick, Alan R Sanders, Jianfeng Xu","doi":"10.1111/jdi.14297","DOIUrl":null,"url":null,"abstract":"<p><p>Atypical diabetes with overlapping clinical features of type 1 (T1D) and type 2 (T2D) is common and challenging diagnostically and for implementing effective treatment. Here, we validate a recently reported genetic probability of type 1 diabetes (GenProb-T1D) from the UK Biobank (UKB) for differentiating type 1 diabetes and type 2 diabetes in a diabetes patient cohort from a healthcare system-based biobank in the USA. Among 3,363 diabetes patients, we confirmed the performance of GenProb-T1D in differentiating typical type 1 diabetes vs type 2 diabetes. Furthermore, for 359 atypical diabetes patients, those with GenProb-T1D higher than the pre-defined cutoff derived from the UKB had clinical presentations more consistent with that of typical type 1 diabetes. Similar findings were found in participants of European and non-European ancestries. This study provides necessary validation to translate GenProb-T1D into genetic testing in a multi-ancestry cohort. Measuring underlying genetic susceptibility of type 1 diabetes and type 2 diabetes can supplement current clinical tools for earlier and more accurate diagnoses of diabetes.</p>","PeriodicalId":190,"journal":{"name":"Journal of Diabetes Investigation","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of GenProb-T1D and its clinical utility for differentiating types of diabetes in a biobank from a US healthcare system.\",\"authors\":\"Liana K Billings, Zhuqing Shi, Ashley J Mulford, Jun Wei, Huy Tran, Annabelle Ashworth, S Lilly Zheng, Henry M Dunnenberger, Peter J Hulick, Alan R Sanders, Jianfeng Xu\",\"doi\":\"10.1111/jdi.14297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atypical diabetes with overlapping clinical features of type 1 (T1D) and type 2 (T2D) is common and challenging diagnostically and for implementing effective treatment. Here, we validate a recently reported genetic probability of type 1 diabetes (GenProb-T1D) from the UK Biobank (UKB) for differentiating type 1 diabetes and type 2 diabetes in a diabetes patient cohort from a healthcare system-based biobank in the USA. Among 3,363 diabetes patients, we confirmed the performance of GenProb-T1D in differentiating typical type 1 diabetes vs type 2 diabetes. Furthermore, for 359 atypical diabetes patients, those with GenProb-T1D higher than the pre-defined cutoff derived from the UKB had clinical presentations more consistent with that of typical type 1 diabetes. Similar findings were found in participants of European and non-European ancestries. This study provides necessary validation to translate GenProb-T1D into genetic testing in a multi-ancestry cohort. Measuring underlying genetic susceptibility of type 1 diabetes and type 2 diabetes can supplement current clinical tools for earlier and more accurate diagnoses of diabetes.</p>\",\"PeriodicalId\":190,\"journal\":{\"name\":\"Journal of Diabetes Investigation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Diabetes Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jdi.14297\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jdi.14297","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Validation of GenProb-T1D and its clinical utility for differentiating types of diabetes in a biobank from a US healthcare system.
Atypical diabetes with overlapping clinical features of type 1 (T1D) and type 2 (T2D) is common and challenging diagnostically and for implementing effective treatment. Here, we validate a recently reported genetic probability of type 1 diabetes (GenProb-T1D) from the UK Biobank (UKB) for differentiating type 1 diabetes and type 2 diabetes in a diabetes patient cohort from a healthcare system-based biobank in the USA. Among 3,363 diabetes patients, we confirmed the performance of GenProb-T1D in differentiating typical type 1 diabetes vs type 2 diabetes. Furthermore, for 359 atypical diabetes patients, those with GenProb-T1D higher than the pre-defined cutoff derived from the UKB had clinical presentations more consistent with that of typical type 1 diabetes. Similar findings were found in participants of European and non-European ancestries. This study provides necessary validation to translate GenProb-T1D into genetic testing in a multi-ancestry cohort. Measuring underlying genetic susceptibility of type 1 diabetes and type 2 diabetes can supplement current clinical tools for earlier and more accurate diagnoses of diabetes.
期刊介绍:
Journal of Diabetes Investigation is your core diabetes journal from Asia; the official journal of the Asian Association for the Study of Diabetes (AASD). The journal publishes original research, country reports, commentaries, reviews, mini-reviews, case reports, letters, as well as editorials and news. Embracing clinical and experimental research in diabetes and related areas, the Journal of Diabetes Investigation includes aspects of prevention, treatment, as well as molecular aspects and pathophysiology. Translational research focused on the exchange of ideas between clinicians and researchers is also welcome. Journal of Diabetes Investigation is indexed by Science Citation Index Expanded (SCIE).