监测来自社区和医院污水处理厂的甲型和乙型流感病毒。

IF 3.6 4区 生物学 Q2 ENVIRONMENTAL SCIENCES Environmental Microbiology Reports Pub Date : 2024-08-22 DOI:10.1111/1758-2229.13317
Sneka Panneerselvam, Athira Manayan Parambil, Anup Jayaram, Prasad Varamballi, Chiranjay Mukhopadhyay, Anitha Jagadesh
{"title":"监测来自社区和医院污水处理厂的甲型和乙型流感病毒。","authors":"Sneka Panneerselvam,&nbsp;Athira Manayan Parambil,&nbsp;Anup Jayaram,&nbsp;Prasad Varamballi,&nbsp;Chiranjay Mukhopadhyay,&nbsp;Anitha Jagadesh","doi":"10.1111/1758-2229.13317","DOIUrl":null,"url":null,"abstract":"<p>Influenza virus is a well-known pathogen that can cause epidemics and pandemics. Several surveillance methods are being followed to monitor the transmission patterns and spread of influenza in the community. Wastewater-based Epidemiology (WBE) can serve as an additional tool to detect the presence of influenza viruses. The current study primarily focuses on surveillance of Influenza A and Influenza B in wastewater treatment plant (WWTP) samples. A total of 100 wastewater samples were collected in July (<i>n</i> = 50) and August (<i>n</i> = 50) 2023 from four different WWTPs in Manipal and Udupi, district of Karnataka, India. The WWTP samples were processed and tested by Real-Time reverse transcriptase PCR (RT-PCR). The data generated was analysed in comparison with the clinical Influenza cases. Of the 100 samples, 18 (18%) tested positive for Influenza A virus and 2 (2%) tested positive for Influenza B virus, with a viral load ranging 1.4 x 10<sup>2</sup>–2.2 x 10<sup>3</sup> gc/L for influenza A virus and 5.2 x 10<sup>3</sup>–7.7 x 10<sup>3</sup>gc/L for influenza B virus. On correlating the WWTP positivity with clinical case, it was found that influenza clinical cases and virus positivity in wastewater increased simultaneously, emphasizing WBE as a concurrent method for monitoring influenza virus activity.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.13317","citationCount":"0","resultStr":"{\"title\":\"Surveillance of influenza A and B viruses from community and hospital wastewater treatment plants\",\"authors\":\"Sneka Panneerselvam,&nbsp;Athira Manayan Parambil,&nbsp;Anup Jayaram,&nbsp;Prasad Varamballi,&nbsp;Chiranjay Mukhopadhyay,&nbsp;Anitha Jagadesh\",\"doi\":\"10.1111/1758-2229.13317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Influenza virus is a well-known pathogen that can cause epidemics and pandemics. Several surveillance methods are being followed to monitor the transmission patterns and spread of influenza in the community. Wastewater-based Epidemiology (WBE) can serve as an additional tool to detect the presence of influenza viruses. The current study primarily focuses on surveillance of Influenza A and Influenza B in wastewater treatment plant (WWTP) samples. A total of 100 wastewater samples were collected in July (<i>n</i> = 50) and August (<i>n</i> = 50) 2023 from four different WWTPs in Manipal and Udupi, district of Karnataka, India. The WWTP samples were processed and tested by Real-Time reverse transcriptase PCR (RT-PCR). The data generated was analysed in comparison with the clinical Influenza cases. Of the 100 samples, 18 (18%) tested positive for Influenza A virus and 2 (2%) tested positive for Influenza B virus, with a viral load ranging 1.4 x 10<sup>2</sup>–2.2 x 10<sup>3</sup> gc/L for influenza A virus and 5.2 x 10<sup>3</sup>–7.7 x 10<sup>3</sup>gc/L for influenza B virus. On correlating the WWTP positivity with clinical case, it was found that influenza clinical cases and virus positivity in wastewater increased simultaneously, emphasizing WBE as a concurrent method for monitoring influenza virus activity.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"16 4\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.13317\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13317\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13317","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

流感病毒是一种众所周知的病原体,可导致流行病和大流行。目前有多种监测方法可用于监测流感在社区中的传播模式和扩散情况。废水流行病学 (WBE) 可以作为检测流感病毒存在的另一种工具。目前的研究主要侧重于监测污水处理厂样本中的甲型流感和乙型流感病毒。研究人员于 2023 年 7 月(n = 50)和 8 月(n = 50)从印度卡纳塔克邦马尼帕尔和乌杜皮地区的四个不同污水处理厂共收集了 100 份废水样本。这些污水处理厂的样本经处理后通过实时逆转录酶 PCR (RT-PCR) 进行检测。生成的数据与临床流感病例进行了对比分析。在 100 个样本中,18 个(18%)对甲型流感病毒检测呈阳性,2 个(2%)对乙型流感病毒检测呈阳性,甲型流感病毒的病毒载量为 1.4 x 102-2.2 x 103 gc/L,乙型流感病毒的病毒载量为 5.2 x 103-7.7 x 103gc/L。将污水处理设施中的阳性结果与临床病例相关联,发现流感临床病例和污水中的病毒阳性结果同时增加,这突出表明水生生物学是监测流感病毒活动的一种并行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surveillance of influenza A and B viruses from community and hospital wastewater treatment plants

Influenza virus is a well-known pathogen that can cause epidemics and pandemics. Several surveillance methods are being followed to monitor the transmission patterns and spread of influenza in the community. Wastewater-based Epidemiology (WBE) can serve as an additional tool to detect the presence of influenza viruses. The current study primarily focuses on surveillance of Influenza A and Influenza B in wastewater treatment plant (WWTP) samples. A total of 100 wastewater samples were collected in July (n = 50) and August (n = 50) 2023 from four different WWTPs in Manipal and Udupi, district of Karnataka, India. The WWTP samples were processed and tested by Real-Time reverse transcriptase PCR (RT-PCR). The data generated was analysed in comparison with the clinical Influenza cases. Of the 100 samples, 18 (18%) tested positive for Influenza A virus and 2 (2%) tested positive for Influenza B virus, with a viral load ranging 1.4 x 102–2.2 x 103 gc/L for influenza A virus and 5.2 x 103–7.7 x 103gc/L for influenza B virus. On correlating the WWTP positivity with clinical case, it was found that influenza clinical cases and virus positivity in wastewater increased simultaneously, emphasizing WBE as a concurrent method for monitoring influenza virus activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Microbiology Reports
Environmental Microbiology Reports ENVIRONMENTAL SCIENCES-MICROBIOLOGY
CiteScore
6.00
自引率
3.00%
发文量
91
审稿时长
3.0 months
期刊介绍: The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side. Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.
期刊最新文献
At what cost? The impact of bacteriophage resistance on the growth kinetics and protein synthesis of Escherichia coli. Metagenomic analysis reveals houseflies as indicators for monitoring environmental antibiotic resistance genes. Understanding the tolerance of halophilic archaea to stress landscapes. Increased antibiotic resistance gene abundance linked to intensive bacterial competition in the phyllosphere across an elevational gradient. 1,8-Dihydroxynaphthalene (DHN) melanin provides unequal protection to black fungi Knufia petricola and Cryomyces antarcticus from UV-B radiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1