Yang Shen, Toine F. H. Bovee, Douwe Molenaar, Yoran Weide, Antsje Nolles, Carmen Braucic Mitrovic, Stefan P. J. van Leeuwen, Jochem Louisse, Timo Hamers
{"title":"测量化学物质与甲状腺激素分配蛋白转甲状腺素和甲状腺素结合球蛋白竞争性结合的优化方法。","authors":"Yang Shen, Toine F. H. Bovee, Douwe Molenaar, Yoran Weide, Antsje Nolles, Carmen Braucic Mitrovic, Stefan P. J. van Leeuwen, Jochem Louisse, Timo Hamers","doi":"10.1007/s00204-024-03842-y","DOIUrl":null,"url":null,"abstract":"<div><p>Transthyretin (TTR) and thyroxine-binding globulin (TBG) are two major thyroid hormone (TH) distributor proteins in human plasma, playing important roles in stabilizing the TH levels in plasma, delivery of TH to target tissues, and trans-barrier transport. Binding of xenobiotics to these distributor proteins can potentially affect all these three important roles of distributor proteins. Therefore, fast and cost-effective experimental methods are required for both TTR and TBG to screen both existing and new chemicals for their potential binding. In the present study, the TTR-binding assay was therefore simplified, optimized and pre-validated, while a new TBG-binding assay was developed based on fluorescence polarization as a readout. Seven model compounds (including positive and negative controls) were tested in the pre-validation study of the optimized TTR-binding assay and in the newly developed TBG-binding assay. The dissociation constants of the natural ligand (thyroxine, T4) and potential competitors were determined and compared between two distributor proteins, showing striking differences for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA).</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"98 11","pages":"3797 - 3809"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00204-024-03842-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimized methods for measuring competitive binding of chemical substances to thyroid hormone distributor proteins transthyretin and thyroxine binding globulin\",\"authors\":\"Yang Shen, Toine F. H. Bovee, Douwe Molenaar, Yoran Weide, Antsje Nolles, Carmen Braucic Mitrovic, Stefan P. J. van Leeuwen, Jochem Louisse, Timo Hamers\",\"doi\":\"10.1007/s00204-024-03842-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transthyretin (TTR) and thyroxine-binding globulin (TBG) are two major thyroid hormone (TH) distributor proteins in human plasma, playing important roles in stabilizing the TH levels in plasma, delivery of TH to target tissues, and trans-barrier transport. Binding of xenobiotics to these distributor proteins can potentially affect all these three important roles of distributor proteins. Therefore, fast and cost-effective experimental methods are required for both TTR and TBG to screen both existing and new chemicals for their potential binding. In the present study, the TTR-binding assay was therefore simplified, optimized and pre-validated, while a new TBG-binding assay was developed based on fluorescence polarization as a readout. Seven model compounds (including positive and negative controls) were tested in the pre-validation study of the optimized TTR-binding assay and in the newly developed TBG-binding assay. The dissociation constants of the natural ligand (thyroxine, T4) and potential competitors were determined and compared between two distributor proteins, showing striking differences for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA).</p></div>\",\"PeriodicalId\":8329,\"journal\":{\"name\":\"Archives of Toxicology\",\"volume\":\"98 11\",\"pages\":\"3797 - 3809\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00204-024-03842-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00204-024-03842-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00204-024-03842-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Optimized methods for measuring competitive binding of chemical substances to thyroid hormone distributor proteins transthyretin and thyroxine binding globulin
Transthyretin (TTR) and thyroxine-binding globulin (TBG) are two major thyroid hormone (TH) distributor proteins in human plasma, playing important roles in stabilizing the TH levels in plasma, delivery of TH to target tissues, and trans-barrier transport. Binding of xenobiotics to these distributor proteins can potentially affect all these three important roles of distributor proteins. Therefore, fast and cost-effective experimental methods are required for both TTR and TBG to screen both existing and new chemicals for their potential binding. In the present study, the TTR-binding assay was therefore simplified, optimized and pre-validated, while a new TBG-binding assay was developed based on fluorescence polarization as a readout. Seven model compounds (including positive and negative controls) were tested in the pre-validation study of the optimized TTR-binding assay and in the newly developed TBG-binding assay. The dissociation constants of the natural ligand (thyroxine, T4) and potential competitors were determined and compared between two distributor proteins, showing striking differences for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA).
期刊介绍:
Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.