研究自身免疫性中枢神经系统疾病的 HLA 转基因小鼠模型。

IF 3.3 4区 医学 Q3 IMMUNOLOGY Autoimmunity Pub Date : 2024-12-01 Epub Date: 2024-08-21 DOI:10.1080/08916934.2024.2387414
Kyle R Pressley, Lance Schwegman, Maria Montes De Oca Arena, Carol Chase Huizar, Scott S Zamvil, Thomas G Forsthuber
{"title":"研究自身免疫性中枢神经系统疾病的 HLA 转基因小鼠模型。","authors":"Kyle R Pressley, Lance Schwegman, Maria Montes De Oca Arena, Carol Chase Huizar, Scott S Zamvil, Thomas G Forsthuber","doi":"10.1080/08916934.2024.2387414","DOIUrl":null,"url":null,"abstract":"<p><p>It is known that certain human leukocyte antigen (HLA) genes are associated with autoimmune central nervous system (CNS) diseases, such as multiple sclerosis (MS), but their exact role in disease susceptibility and etiopathogenesis remains unclear. The best studied HLA-associated autoimmune CNS disease is MS, and thus will be the primary focus of this review. Other HLA-associated autoimmune CNS diseases, such as autoimmune encephalitis and neuromyelitis optica will be discussed. The lack of animal models to accurately capture the complex human autoimmune response remains a major challenge. HLA transgenic (<i>tg</i>) mice provide researchers with powerful tools to investigate the underlying mechanisms promoting susceptibility and progression of HLA-associated autoimmune CNS diseases, as well as for elucidating the myelin epitopes potentially targeted by T cells in autoimmune disease patients. We will discuss the potential role(s) of autoimmune disease-associated <i>HLA</i> alleles in autoimmune CNS diseases and highlight information provided by studies using HLA <i>tg</i> mice to investigate the underlying pathological mechanisms and opportunities to use these models for development of novel therapies.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HLA-transgenic mouse models to study autoimmune central nervous system diseases.\",\"authors\":\"Kyle R Pressley, Lance Schwegman, Maria Montes De Oca Arena, Carol Chase Huizar, Scott S Zamvil, Thomas G Forsthuber\",\"doi\":\"10.1080/08916934.2024.2387414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is known that certain human leukocyte antigen (HLA) genes are associated with autoimmune central nervous system (CNS) diseases, such as multiple sclerosis (MS), but their exact role in disease susceptibility and etiopathogenesis remains unclear. The best studied HLA-associated autoimmune CNS disease is MS, and thus will be the primary focus of this review. Other HLA-associated autoimmune CNS diseases, such as autoimmune encephalitis and neuromyelitis optica will be discussed. The lack of animal models to accurately capture the complex human autoimmune response remains a major challenge. HLA transgenic (<i>tg</i>) mice provide researchers with powerful tools to investigate the underlying mechanisms promoting susceptibility and progression of HLA-associated autoimmune CNS diseases, as well as for elucidating the myelin epitopes potentially targeted by T cells in autoimmune disease patients. We will discuss the potential role(s) of autoimmune disease-associated <i>HLA</i> alleles in autoimmune CNS diseases and highlight information provided by studies using HLA <i>tg</i> mice to investigate the underlying pathological mechanisms and opportunities to use these models for development of novel therapies.</p>\",\"PeriodicalId\":8688,\"journal\":{\"name\":\"Autoimmunity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autoimmunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08916934.2024.2387414\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autoimmunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08916934.2024.2387414","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,某些人类白细胞抗原(HLA)基因与自身免疫性中枢神经系统(CNS)疾病(如多发性硬化症(MS))有关,但它们在疾病易感性和发病机制中的确切作用仍不清楚。与 HLA 相关的自身免疫性中枢神经系统疾病中研究得最清楚的是多发性硬化症,因此这也是本综述的主要重点。本综述还将讨论其他与 HLA 相关的自身免疫性中枢神经系统疾病,如自身免疫性脑炎和视神经脊髓炎。缺乏能准确捕捉复杂人类自身免疫反应的动物模型仍是一大挑战。HLA 转基因(tg)小鼠为研究人员提供了强大的工具,用于研究促进 HLA 相关自身免疫性中枢神经系统疾病易感性和进展的潜在机制,以及阐明自身免疫性疾病患者的 T 细胞可能靶向的髓鞘表位。我们将讨论自身免疫性疾病相关的 HLA 等位基因在自身免疫性中枢神经系统疾病中的潜在作用,并重点介绍利用 HLA tg 小鼠研究潜在病理机制所提供的信息,以及利用这些模型开发新型疗法的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HLA-transgenic mouse models to study autoimmune central nervous system diseases.

It is known that certain human leukocyte antigen (HLA) genes are associated with autoimmune central nervous system (CNS) diseases, such as multiple sclerosis (MS), but their exact role in disease susceptibility and etiopathogenesis remains unclear. The best studied HLA-associated autoimmune CNS disease is MS, and thus will be the primary focus of this review. Other HLA-associated autoimmune CNS diseases, such as autoimmune encephalitis and neuromyelitis optica will be discussed. The lack of animal models to accurately capture the complex human autoimmune response remains a major challenge. HLA transgenic (tg) mice provide researchers with powerful tools to investigate the underlying mechanisms promoting susceptibility and progression of HLA-associated autoimmune CNS diseases, as well as for elucidating the myelin epitopes potentially targeted by T cells in autoimmune disease patients. We will discuss the potential role(s) of autoimmune disease-associated HLA alleles in autoimmune CNS diseases and highlight information provided by studies using HLA tg mice to investigate the underlying pathological mechanisms and opportunities to use these models for development of novel therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autoimmunity
Autoimmunity 医学-免疫学
CiteScore
5.70
自引率
8.60%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Autoimmunity is an international, peer reviewed journal that publishes articles on cell and molecular immunology, immunogenetics, molecular biology and autoimmunity. Current understanding of immunity and autoimmunity is being furthered by the progress in new molecular sciences that has recently been little short of spectacular. In addition to the basic elements and mechanisms of the immune system, Autoimmunity is interested in the cellular and molecular processes associated with systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, type I diabetes, multiple sclerosis and other systemic and organ-specific autoimmune disorders. The journal reflects the immunology areas where scientific progress is most rapid. It is a valuable tool to basic and translational researchers in cell biology, genetics and molecular biology of immunity and autoimmunity.
期刊最新文献
KISS-1 knockdown inhibits cell growth, migration, and invasion in HTR-8/SVneo cells by regulating the GRP54-mediated PI3K/AKT signaling pathway. Circ_0011058 alleviates RA pathology through the circ_0011058/miR-335-5p/CUL4B signal axis. CircNRIP1 promotes proliferation, migration and phenotypic switch of Ang II-induced HA-VSMCs by increasing CXCL5 mRNA stability via recruiting IGF2BP1. Circ_0036490 and DKK1 competitively bind miR-29a to promote lipopolysaccharides-induced human gingival fibroblasts injury. Bioinformatics and systems-biology approach to identify common pathogenic mechanisms for COVID-19 and systemic lupus erythematosus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1