SNORA5A 通过 TRAF3IP3 调节乳腺癌中肿瘤相关巨噬细胞 M1/M2 的表型。

IF 1.9 4区 医学 Q2 BIOLOGY Brazilian Journal of Medical and Biological Research Pub Date : 2024-08-19 eCollection Date: 2024-01-01 DOI:10.1590/1414-431X2024e13809
Yiqi Zhang, Ang Zheng, Yue Shi, Heng Lu
{"title":"SNORA5A 通过 TRAF3IP3 调节乳腺癌中肿瘤相关巨噬细胞 M1/M2 的表型。","authors":"Yiqi Zhang, Ang Zheng, Yue Shi, Heng Lu","doi":"10.1590/1414-431X2024e13809","DOIUrl":null,"url":null,"abstract":"<p><p>Small nucleolar RNAs (snoRNAs) have robust potential functions and therapeutic value in breast cancer. Herein, we investigated the role SNORA5A in breast cancer. Samples from The Cancer Genome Atlas (TCGA) were reviewed. The transcription matrix and clinical information were analyzed using R software and validated in clinical tissue samples. SNORA5A was significantly down-regulated in breast cancer, and high expression of SNORA5A correlated with a favorable prognosis. High expression of SNORA5A induced a high concentration of tumor-associated macrophages M1 and a low concentration of tumor-associated macrophages M2. Moreover, SNORA5A were clustered in terms related to cancer and immune functions. Possible downstream molecules of SNORA5A were identified, among which TRAF3IP3 was positively correlated with M1 and negatively correlated with M2. The function of TRAF3IP3 in tumor inhibition and its relationship with macrophages in clinical tissue samples were in accordance with bioinformatics analysis results. SNORA5A could regulate macrophage phenotypes through TRAF3IP3 and serves as a potential prognostic marker for breast cancer patients.</p>","PeriodicalId":9088,"journal":{"name":"Brazilian Journal of Medical and Biological Research","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338549/pdf/","citationCount":"0","resultStr":"{\"title\":\"SNORA5A regulates tumor-associated macrophage M1/M2 phenotypes via TRAF3IP3 in breast cancer.\",\"authors\":\"Yiqi Zhang, Ang Zheng, Yue Shi, Heng Lu\",\"doi\":\"10.1590/1414-431X2024e13809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small nucleolar RNAs (snoRNAs) have robust potential functions and therapeutic value in breast cancer. Herein, we investigated the role SNORA5A in breast cancer. Samples from The Cancer Genome Atlas (TCGA) were reviewed. The transcription matrix and clinical information were analyzed using R software and validated in clinical tissue samples. SNORA5A was significantly down-regulated in breast cancer, and high expression of SNORA5A correlated with a favorable prognosis. High expression of SNORA5A induced a high concentration of tumor-associated macrophages M1 and a low concentration of tumor-associated macrophages M2. Moreover, SNORA5A were clustered in terms related to cancer and immune functions. Possible downstream molecules of SNORA5A were identified, among which TRAF3IP3 was positively correlated with M1 and negatively correlated with M2. The function of TRAF3IP3 in tumor inhibition and its relationship with macrophages in clinical tissue samples were in accordance with bioinformatics analysis results. SNORA5A could regulate macrophage phenotypes through TRAF3IP3 and serves as a potential prognostic marker for breast cancer patients.</p>\",\"PeriodicalId\":9088,\"journal\":{\"name\":\"Brazilian Journal of Medical and Biological Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Medical and Biological Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1590/1414-431X2024e13809\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Medical and Biological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1414-431X2024e13809","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

小核RNA(snoRNA)在乳腺癌中具有强大的潜在功能和治疗价值。在此,我们研究了 SNORA5A 在乳腺癌中的作用。我们查阅了癌症基因组图谱(TCGA)中的样本。利用 R 软件分析了转录矩阵和临床信息,并在临床组织样本中进行了验证。SNORA5A在乳腺癌中明显下调,SNORA5A的高表达与良好的预后相关。SNORA5A的高表达诱导了高浓度的肿瘤相关巨噬细胞M1和低浓度的肿瘤相关巨噬细胞M2。此外,SNORA5A与癌症和免疫功能相关。研究发现了 SNORA5A 的可能下游分子,其中 TRAF3IP3 与 M1 呈正相关,与 M2 呈负相关。TRAF3IP3在抑制肿瘤中的功能及其与临床组织样本中巨噬细胞的关系与生物信息学分析结果一致。SNORA5A可通过TRAF3IP3调控巨噬细胞表型,并可作为乳腺癌患者的潜在预后标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SNORA5A regulates tumor-associated macrophage M1/M2 phenotypes via TRAF3IP3 in breast cancer.

Small nucleolar RNAs (snoRNAs) have robust potential functions and therapeutic value in breast cancer. Herein, we investigated the role SNORA5A in breast cancer. Samples from The Cancer Genome Atlas (TCGA) were reviewed. The transcription matrix and clinical information were analyzed using R software and validated in clinical tissue samples. SNORA5A was significantly down-regulated in breast cancer, and high expression of SNORA5A correlated with a favorable prognosis. High expression of SNORA5A induced a high concentration of tumor-associated macrophages M1 and a low concentration of tumor-associated macrophages M2. Moreover, SNORA5A were clustered in terms related to cancer and immune functions. Possible downstream molecules of SNORA5A were identified, among which TRAF3IP3 was positively correlated with M1 and negatively correlated with M2. The function of TRAF3IP3 in tumor inhibition and its relationship with macrophages in clinical tissue samples were in accordance with bioinformatics analysis results. SNORA5A could regulate macrophage phenotypes through TRAF3IP3 and serves as a potential prognostic marker for breast cancer patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
129
审稿时长
2 months
期刊介绍: The Brazilian Journal of Medical and Biological Research, founded by Michel Jamra, is edited and published monthly by the Associação Brasileira de Divulgação Científica (ABDC), a federation of Brazilian scientific societies: - Sociedade Brasileira de Biofísica (SBBf) - Sociedade Brasileira de Farmacologia e Terapêutica Experimental (SBFTE) - Sociedade Brasileira de Fisiologia (SBFis) - Sociedade Brasileira de Imunologia (SBI) - Sociedade Brasileira de Investigação Clínica (SBIC) - Sociedade Brasileira de Neurociências e Comportamento (SBNeC).
期刊最新文献
Cognitive behavioral stress management effectively facilitates neurologic recovery, alleviates mental distress, and elevates health status in acute ischemic stroke patients. Decoding potential targets and pharmacologic mechanisms of curcumin in treating non-small cell lung carcinoma via bioinformatics and molecular docking. Diagnostic value of serum inflammatory markers in predicting early refractoriness of transarterial chemoembolization in patients with Barcelona Clinic Liver Cancer Stage 0, A, and B hepatocellular carcinoma. Inhibition of the ITGB1 gene attenuates crystalline silica-induced pulmonary fibrosis via epithelial-mesenchymal transformation. NLRP1 inhibits lung adenocarcinoma growth through mediating mitochondrial dysregulation in an inflammasome-independent manner.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1