Pier Giorgio Cojutti, Sara Tedeschi, Eleonora Zamparini, Pierluigi Viale, Federico Pea
{"title":"葡萄球菌骨关节感染患者体内达尔巴万星和 C 反应蛋白的群体药代动力学和药效学研究","authors":"Pier Giorgio Cojutti, Sara Tedeschi, Eleonora Zamparini, Pierluigi Viale, Federico Pea","doi":"10.1007/s40262-024-01410-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Dalbavancin is increasingly used for the long-term treatment of chronic osteoarticular infections. A population pharmacokinetic/pharmacodynamic (PK/PD) analysis for assessing the relationship between dalbavancin exposure and C-reactive protein (C-RP) over time was conducted.</p><p><strong>Methods: </strong>Non-linear mixed-effect modeling was fitted to dalbavancin and C-RP concentrations. Monte Carlo simulations assessed the weekly percentage of C-RP reduction associated with different dosing regimens, starting from baseline to < 1 mg/dL.</p><p><strong>Results: </strong>A total of 45 patients were retrospectively included in the analysis. The PK of dalbavancin was described by a two-compartment model, and the PD of C-RP was described by an indirect turnover maximum inhibition model. The total dalbavancin concentration model estimate producing 50% of maximum C-RP production inhibition (IC<sub>50</sub>) was 0.70 mg/L. Monte Carlo simulations showed that in patients with staphylococcal osteoarticular infections targeting total dalbavancin concentrations at > 14.5 mg/L at any time point may achieve C-RP production inhibition over time in > 95% of patients. Based on this, the findings showed that a cumulative dose of 3000 mg administered in the first 3 weeks may lead to a > 90% C-RP decrease versus baseline in approximately 5-6 weeks. In patients needing treatment prolongation, an additional 1500 mg dose after this period may maintain C-RP concentrations < 1 mg/dL for other 3 weeks.</p><p><strong>Conclusions: </strong>A decrease in C-RP is related to dalbavancin exposure in osteoarticular infections. Targeting dalbavancin plasma concentrations above the efficacy threshold may be associated with effective treatment.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":"1271-1282"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449996/pdf/","citationCount":"0","resultStr":"{\"title\":\"Population Pharmacokinetics and Pharmacodynamics of Dalbavancin and C-Reactive Protein in Patients with Staphylococcal Osteoarticular Infections.\",\"authors\":\"Pier Giorgio Cojutti, Sara Tedeschi, Eleonora Zamparini, Pierluigi Viale, Federico Pea\",\"doi\":\"10.1007/s40262-024-01410-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>Dalbavancin is increasingly used for the long-term treatment of chronic osteoarticular infections. A population pharmacokinetic/pharmacodynamic (PK/PD) analysis for assessing the relationship between dalbavancin exposure and C-reactive protein (C-RP) over time was conducted.</p><p><strong>Methods: </strong>Non-linear mixed-effect modeling was fitted to dalbavancin and C-RP concentrations. Monte Carlo simulations assessed the weekly percentage of C-RP reduction associated with different dosing regimens, starting from baseline to < 1 mg/dL.</p><p><strong>Results: </strong>A total of 45 patients were retrospectively included in the analysis. The PK of dalbavancin was described by a two-compartment model, and the PD of C-RP was described by an indirect turnover maximum inhibition model. The total dalbavancin concentration model estimate producing 50% of maximum C-RP production inhibition (IC<sub>50</sub>) was 0.70 mg/L. Monte Carlo simulations showed that in patients with staphylococcal osteoarticular infections targeting total dalbavancin concentrations at > 14.5 mg/L at any time point may achieve C-RP production inhibition over time in > 95% of patients. Based on this, the findings showed that a cumulative dose of 3000 mg administered in the first 3 weeks may lead to a > 90% C-RP decrease versus baseline in approximately 5-6 weeks. In patients needing treatment prolongation, an additional 1500 mg dose after this period may maintain C-RP concentrations < 1 mg/dL for other 3 weeks.</p><p><strong>Conclusions: </strong>A decrease in C-RP is related to dalbavancin exposure in osteoarticular infections. Targeting dalbavancin plasma concentrations above the efficacy threshold may be associated with effective treatment.</p>\",\"PeriodicalId\":10405,\"journal\":{\"name\":\"Clinical Pharmacokinetics\",\"volume\":\" \",\"pages\":\"1271-1282\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449996/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Pharmacokinetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40262-024-01410-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40262-024-01410-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Population Pharmacokinetics and Pharmacodynamics of Dalbavancin and C-Reactive Protein in Patients with Staphylococcal Osteoarticular Infections.
Background and objective: Dalbavancin is increasingly used for the long-term treatment of chronic osteoarticular infections. A population pharmacokinetic/pharmacodynamic (PK/PD) analysis for assessing the relationship between dalbavancin exposure and C-reactive protein (C-RP) over time was conducted.
Methods: Non-linear mixed-effect modeling was fitted to dalbavancin and C-RP concentrations. Monte Carlo simulations assessed the weekly percentage of C-RP reduction associated with different dosing regimens, starting from baseline to < 1 mg/dL.
Results: A total of 45 patients were retrospectively included in the analysis. The PK of dalbavancin was described by a two-compartment model, and the PD of C-RP was described by an indirect turnover maximum inhibition model. The total dalbavancin concentration model estimate producing 50% of maximum C-RP production inhibition (IC50) was 0.70 mg/L. Monte Carlo simulations showed that in patients with staphylococcal osteoarticular infections targeting total dalbavancin concentrations at > 14.5 mg/L at any time point may achieve C-RP production inhibition over time in > 95% of patients. Based on this, the findings showed that a cumulative dose of 3000 mg administered in the first 3 weeks may lead to a > 90% C-RP decrease versus baseline in approximately 5-6 weeks. In patients needing treatment prolongation, an additional 1500 mg dose after this period may maintain C-RP concentrations < 1 mg/dL for other 3 weeks.
Conclusions: A decrease in C-RP is related to dalbavancin exposure in osteoarticular infections. Targeting dalbavancin plasma concentrations above the efficacy threshold may be associated with effective treatment.
期刊介绍:
Clinical Pharmacokinetics promotes the continuing development of clinical pharmacokinetics and pharmacodynamics for the improvement of drug therapy, and for furthering postgraduate education in clinical pharmacology and therapeutics.
Pharmacokinetics, the study of drug disposition in the body, is an integral part of drug development and rational use. Knowledge and application of pharmacokinetic principles leads to accelerated drug development, cost effective drug use and a reduced frequency of adverse effects and drug interactions.