Xindi Yu;Shusen Zhou;Mujun Zang;Qingjun Wang;Chanjuan Liu;Tong Liu
{"title":"用于酶功能预测的并行卷积对比学习方法。","authors":"Xindi Yu;Shusen Zhou;Mujun Zang;Qingjun Wang;Chanjuan Liu;Tong Liu","doi":"10.1109/TCBB.2024.3447037","DOIUrl":null,"url":null,"abstract":"The function labeling of enzymes has a wide range of application value in the medical field, industrial biology and other fields. Scientists define enzyme categories by enzyme commission (EC) numbers. At present, although there are some tools for enzyme function prediction, their effects have not reached the application level. To improve the precision of enzyme function prediction, we propose a parallel convolutional contrastive learning (PCCL) method to predict enzyme functions. First, we use the advanced protein language model ESM-2 to preprocess the protein sequences. Second, PCCL combines convolutional neural networks (CNNs) and contrastive learning to improve the prediction precision of multifunctional enzymes. Contrastive learning can make the model better deal with the problem of class imbalance. Finally, the deep learning framework is mainly composed of three parallel CNNs for fully extracting sample features. we compare PCCL with state-of-art enzyme function prediction methods based on three evaluation metrics. The performance of our model improves on both two test sets. Especially on the smaller test set, PCCL improves the AUC by 2.57%.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"2604-2609"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Convolutional Contrastive Learning Method for Enzyme Function Prediction\",\"authors\":\"Xindi Yu;Shusen Zhou;Mujun Zang;Qingjun Wang;Chanjuan Liu;Tong Liu\",\"doi\":\"10.1109/TCBB.2024.3447037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The function labeling of enzymes has a wide range of application value in the medical field, industrial biology and other fields. Scientists define enzyme categories by enzyme commission (EC) numbers. At present, although there are some tools for enzyme function prediction, their effects have not reached the application level. To improve the precision of enzyme function prediction, we propose a parallel convolutional contrastive learning (PCCL) method to predict enzyme functions. First, we use the advanced protein language model ESM-2 to preprocess the protein sequences. Second, PCCL combines convolutional neural networks (CNNs) and contrastive learning to improve the prediction precision of multifunctional enzymes. Contrastive learning can make the model better deal with the problem of class imbalance. Finally, the deep learning framework is mainly composed of three parallel CNNs for fully extracting sample features. we compare PCCL with state-of-art enzyme function prediction methods based on three evaluation metrics. The performance of our model improves on both two test sets. Especially on the smaller test set, PCCL improves the AUC by 2.57%.\",\"PeriodicalId\":13344,\"journal\":{\"name\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"volume\":\"21 6\",\"pages\":\"2604-2609\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643367/\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10643367/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Parallel Convolutional Contrastive Learning Method for Enzyme Function Prediction
The function labeling of enzymes has a wide range of application value in the medical field, industrial biology and other fields. Scientists define enzyme categories by enzyme commission (EC) numbers. At present, although there are some tools for enzyme function prediction, their effects have not reached the application level. To improve the precision of enzyme function prediction, we propose a parallel convolutional contrastive learning (PCCL) method to predict enzyme functions. First, we use the advanced protein language model ESM-2 to preprocess the protein sequences. Second, PCCL combines convolutional neural networks (CNNs) and contrastive learning to improve the prediction precision of multifunctional enzymes. Contrastive learning can make the model better deal with the problem of class imbalance. Finally, the deep learning framework is mainly composed of three parallel CNNs for fully extracting sample features. we compare PCCL with state-of-art enzyme function prediction methods based on three evaluation metrics. The performance of our model improves on both two test sets. Especially on the smaller test set, PCCL improves the AUC by 2.57%.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system