AAV介导的Stambp基因替代疗法可挽救小头畸形-毛细血管畸形综合征小鼠模型的神经缺陷。

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Molecular Therapy Pub Date : 2024-11-06 Epub Date: 2024-08-22 DOI:10.1016/j.ymthe.2024.08.017
Meixin Hu, Jun Li, Jingxin Deng, Chunxue Liu, Yingying Liu, Huiping Li, Weijun Feng, Xiu Xu
{"title":"AAV介导的Stambp基因替代疗法可挽救小头畸形-毛细血管畸形综合征小鼠模型的神经缺陷。","authors":"Meixin Hu, Jun Li, Jingxin Deng, Chunxue Liu, Yingying Liu, Huiping Li, Weijun Feng, Xiu Xu","doi":"10.1016/j.ymthe.2024.08.017","DOIUrl":null,"url":null,"abstract":"<p><p>The microcephaly-capillary malformation (MIC-CAP) syndrome is a life-threatening disease caused by biallelic mutations of the STAMBP gene, which encodes an endosomal deubiquitinating enzyme. To establish a suitable preclinical animal model for clinical therapeutic practice, we generated a central nervous system (CNS)-specific Stambp knockout mouse model (Stambp <sup>Sox1-cKO</sup>) that phenocopies Stambp null mice including progressive microcephaly, postnatal growth retardation and complete penetrance of preweaning death. In this MIC-CAP syndrome mouse model, early-onset neuronal death occurs specifically in the hippocampus and cortex, accompanied by aggregation of ubiquitinated proteins, and massive neuroinflammation. Importantly, neonatal AAV9-mediated gene supplementation of Stambp in the brain could significantly improve neurological defects, sustain growth, and prolong the lifespan of Stambp<sup>Sox1-cKO</sup> mice. Together, our findings reveal a central role of brain defects in the pathogenesis of STAMBP deficiency and provide preclinical evidence that postnatal gene replacement is an effective approach to cure the disease.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"4095-4107"},"PeriodicalIF":12.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AAV-mediated Stambp gene replacement therapy rescues neurological defects in a mouse model of microcephaly-capillary malformation syndrome.\",\"authors\":\"Meixin Hu, Jun Li, Jingxin Deng, Chunxue Liu, Yingying Liu, Huiping Li, Weijun Feng, Xiu Xu\",\"doi\":\"10.1016/j.ymthe.2024.08.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The microcephaly-capillary malformation (MIC-CAP) syndrome is a life-threatening disease caused by biallelic mutations of the STAMBP gene, which encodes an endosomal deubiquitinating enzyme. To establish a suitable preclinical animal model for clinical therapeutic practice, we generated a central nervous system (CNS)-specific Stambp knockout mouse model (Stambp <sup>Sox1-cKO</sup>) that phenocopies Stambp null mice including progressive microcephaly, postnatal growth retardation and complete penetrance of preweaning death. In this MIC-CAP syndrome mouse model, early-onset neuronal death occurs specifically in the hippocampus and cortex, accompanied by aggregation of ubiquitinated proteins, and massive neuroinflammation. Importantly, neonatal AAV9-mediated gene supplementation of Stambp in the brain could significantly improve neurological defects, sustain growth, and prolong the lifespan of Stambp<sup>Sox1-cKO</sup> mice. Together, our findings reveal a central role of brain defects in the pathogenesis of STAMBP deficiency and provide preclinical evidence that postnatal gene replacement is an effective approach to cure the disease.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"4095-4107\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2024.08.017\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.08.017","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

小头畸形-毛细血管畸形(MIC-CAP)综合征是一种威胁生命的疾病,由 STAMBP 基因的双倍突变引起,STAMBP 基因编码一种内体去泛素化酶。为了建立一个适用于临床治疗的临床前动物模型,我们建立了一个中枢神经系统(CNS)特异性 Stambp 基因敲除小鼠模型(StambpSox1-cKO),该模型可复制 Stambp 基因缺失小鼠的表型,包括进行性小头畸形、出生后生长迟缓和断奶前死亡的完全穿透性。在这种 MIC-CAP 综合征小鼠模型中,早发性神经元死亡特别发生在海马和皮层,同时伴有泛素化蛋白的聚集和大规模神经炎症。重要的是,新生儿期 AAV9 介导的脑内 Stambp 基因补充能显著改善 StambpSox1-cKO 小鼠的神经系统缺陷、维持生长并延长寿命。总之,我们的研究结果揭示了大脑缺陷在 STAMBP 缺乏症发病机制中的核心作用,并提供了临床前证据,证明产后基因替代是治疗该病的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AAV-mediated Stambp gene replacement therapy rescues neurological defects in a mouse model of microcephaly-capillary malformation syndrome.

The microcephaly-capillary malformation (MIC-CAP) syndrome is a life-threatening disease caused by biallelic mutations of the STAMBP gene, which encodes an endosomal deubiquitinating enzyme. To establish a suitable preclinical animal model for clinical therapeutic practice, we generated a central nervous system (CNS)-specific Stambp knockout mouse model (Stambp Sox1-cKO) that phenocopies Stambp null mice including progressive microcephaly, postnatal growth retardation and complete penetrance of preweaning death. In this MIC-CAP syndrome mouse model, early-onset neuronal death occurs specifically in the hippocampus and cortex, accompanied by aggregation of ubiquitinated proteins, and massive neuroinflammation. Importantly, neonatal AAV9-mediated gene supplementation of Stambp in the brain could significantly improve neurological defects, sustain growth, and prolong the lifespan of StambpSox1-cKO mice. Together, our findings reveal a central role of brain defects in the pathogenesis of STAMBP deficiency and provide preclinical evidence that postnatal gene replacement is an effective approach to cure the disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
期刊最新文献
ARI0003: Co-transduced CD19/BCMA Dual-targeting CAR-T Cells for the Treatment of Non-Hodgkin Lymphoma. CRISPR targeting of mmu-miR-21a through a single adeno-associated virus vector prolongs survival of glioblastoma-bearing mice. Dorsal root ganglion toxicity after AAV intra-CSF delivery of a RNAi expression construct into nonhuman primates and mice. Lipid Nanoparticle Delivery of TALEN mRNA Targeting LPA Causes Gene Disruption and Plasma Lipoprotein(a) Reduction in Transgenic Mice. Longitudinal imaging of therapeutic enzyme expression after gene therapy for Fabry disease using Positron Emission Tomography and the radiotracer [18F]AGAL.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1