{"title":"从鸟嘴到大脑--将啄木鸟生物学转化为脑外伤创新的挑战。","authors":"James M Smoliga","doi":"10.1002/ar.25567","DOIUrl":null,"url":null,"abstract":"<p><p>The biomechanics of woodpeckers have captivated researchers for decades. These birds' unique ability to withstand repeated impacts, seemingly without apparent harm, has piqued the interests of scientists and clinicians across multiple disciplines. Historical and recent studies have dissected the anatomical and physiological underpinnings of woodpeckers' protective mechanisms and sparked interest in the development of woodpecker-inspired safety equipment. Despite the intuitive appeal of translating woodpecker adaptations into strategies for human traumatic brain injury (TBI) prevention, significant challenges hinder such innovation. Critical examinations reveal a lack of direct applicability of these findings to human TBI prevention, attributed to fundamental biological and mechanical dissimilarities between humans and woodpeckers. Additionally, some commercial endeavors attempting to capitalize on our fascination with woodpeckers are rooted in unsubstantiated claims about these birds. This paper explores the narrative surrounding woodpecker biomimicry, including its origins and history, and highlights the challenges of translating findings from unconventional animal models of TBI into effective human medical interventions.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From beaks to brains-Challenges in translating woodpecker biology into traumatic brain injury innovation.\",\"authors\":\"James M Smoliga\",\"doi\":\"10.1002/ar.25567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The biomechanics of woodpeckers have captivated researchers for decades. These birds' unique ability to withstand repeated impacts, seemingly without apparent harm, has piqued the interests of scientists and clinicians across multiple disciplines. Historical and recent studies have dissected the anatomical and physiological underpinnings of woodpeckers' protective mechanisms and sparked interest in the development of woodpecker-inspired safety equipment. Despite the intuitive appeal of translating woodpecker adaptations into strategies for human traumatic brain injury (TBI) prevention, significant challenges hinder such innovation. Critical examinations reveal a lack of direct applicability of these findings to human TBI prevention, attributed to fundamental biological and mechanical dissimilarities between humans and woodpeckers. Additionally, some commercial endeavors attempting to capitalize on our fascination with woodpeckers are rooted in unsubstantiated claims about these birds. This paper explores the narrative surrounding woodpecker biomimicry, including its origins and history, and highlights the challenges of translating findings from unconventional animal models of TBI into effective human medical interventions.</p>\",\"PeriodicalId\":50793,\"journal\":{\"name\":\"Anatomical Record\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anatomical Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ar.25567\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ar.25567","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
From beaks to brains-Challenges in translating woodpecker biology into traumatic brain injury innovation.
The biomechanics of woodpeckers have captivated researchers for decades. These birds' unique ability to withstand repeated impacts, seemingly without apparent harm, has piqued the interests of scientists and clinicians across multiple disciplines. Historical and recent studies have dissected the anatomical and physiological underpinnings of woodpeckers' protective mechanisms and sparked interest in the development of woodpecker-inspired safety equipment. Despite the intuitive appeal of translating woodpecker adaptations into strategies for human traumatic brain injury (TBI) prevention, significant challenges hinder such innovation. Critical examinations reveal a lack of direct applicability of these findings to human TBI prevention, attributed to fundamental biological and mechanical dissimilarities between humans and woodpeckers. Additionally, some commercial endeavors attempting to capitalize on our fascination with woodpeckers are rooted in unsubstantiated claims about these birds. This paper explores the narrative surrounding woodpecker biomimicry, including its origins and history, and highlights the challenges of translating findings from unconventional animal models of TBI into effective human medical interventions.