从鸟嘴到大脑--将啄木鸟生物学转化为脑外伤创新的挑战。

4区 医学 Q2 Agricultural and Biological Sciences Anatomical Record Pub Date : 2024-08-21 DOI:10.1002/ar.25567
James M Smoliga
{"title":"从鸟嘴到大脑--将啄木鸟生物学转化为脑外伤创新的挑战。","authors":"James M Smoliga","doi":"10.1002/ar.25567","DOIUrl":null,"url":null,"abstract":"<p><p>The biomechanics of woodpeckers have captivated researchers for decades. These birds' unique ability to withstand repeated impacts, seemingly without apparent harm, has piqued the interests of scientists and clinicians across multiple disciplines. Historical and recent studies have dissected the anatomical and physiological underpinnings of woodpeckers' protective mechanisms and sparked interest in the development of woodpecker-inspired safety equipment. Despite the intuitive appeal of translating woodpecker adaptations into strategies for human traumatic brain injury (TBI) prevention, significant challenges hinder such innovation. Critical examinations reveal a lack of direct applicability of these findings to human TBI prevention, attributed to fundamental biological and mechanical dissimilarities between humans and woodpeckers. Additionally, some commercial endeavors attempting to capitalize on our fascination with woodpeckers are rooted in unsubstantiated claims about these birds. This paper explores the narrative surrounding woodpecker biomimicry, including its origins and history, and highlights the challenges of translating findings from unconventional animal models of TBI into effective human medical interventions.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From beaks to brains-Challenges in translating woodpecker biology into traumatic brain injury innovation.\",\"authors\":\"James M Smoliga\",\"doi\":\"10.1002/ar.25567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The biomechanics of woodpeckers have captivated researchers for decades. These birds' unique ability to withstand repeated impacts, seemingly without apparent harm, has piqued the interests of scientists and clinicians across multiple disciplines. Historical and recent studies have dissected the anatomical and physiological underpinnings of woodpeckers' protective mechanisms and sparked interest in the development of woodpecker-inspired safety equipment. Despite the intuitive appeal of translating woodpecker adaptations into strategies for human traumatic brain injury (TBI) prevention, significant challenges hinder such innovation. Critical examinations reveal a lack of direct applicability of these findings to human TBI prevention, attributed to fundamental biological and mechanical dissimilarities between humans and woodpeckers. Additionally, some commercial endeavors attempting to capitalize on our fascination with woodpeckers are rooted in unsubstantiated claims about these birds. This paper explores the narrative surrounding woodpecker biomimicry, including its origins and history, and highlights the challenges of translating findings from unconventional animal models of TBI into effective human medical interventions.</p>\",\"PeriodicalId\":50793,\"journal\":{\"name\":\"Anatomical Record\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anatomical Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ar.25567\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ar.25567","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,啄木鸟的生物力学一直吸引着研究人员。这些鸟类能够承受反复的撞击,似乎没有明显的伤害,这种独特的能力引起了多学科科学家和临床医生的兴趣。历史研究和最新研究对啄木鸟保护机制的解剖学和生理学基础进行了剖析,并激发了人们对开发啄木鸟安全设备的兴趣。尽管将啄木鸟的适应性转化为预防人类创伤性脑损伤(TBI)的策略具有直观的吸引力,但巨大的挑战阻碍了这种创新。批判性的研究表明,这些发现并不能直接应用于人类创伤性脑损伤的预防,原因在于人类和啄木鸟在生物和机械方面存在根本性的差异。此外,一些试图利用我们对啄木鸟的迷恋而进行的商业活动植根于对这些鸟类未经证实的说法。本文探讨了围绕啄木鸟生物仿生学的叙述,包括其起源和历史,并强调了将非传统创伤性脑损伤动物模型的研究结果转化为有效人类医疗干预措施所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From beaks to brains-Challenges in translating woodpecker biology into traumatic brain injury innovation.

The biomechanics of woodpeckers have captivated researchers for decades. These birds' unique ability to withstand repeated impacts, seemingly without apparent harm, has piqued the interests of scientists and clinicians across multiple disciplines. Historical and recent studies have dissected the anatomical and physiological underpinnings of woodpeckers' protective mechanisms and sparked interest in the development of woodpecker-inspired safety equipment. Despite the intuitive appeal of translating woodpecker adaptations into strategies for human traumatic brain injury (TBI) prevention, significant challenges hinder such innovation. Critical examinations reveal a lack of direct applicability of these findings to human TBI prevention, attributed to fundamental biological and mechanical dissimilarities between humans and woodpeckers. Additionally, some commercial endeavors attempting to capitalize on our fascination with woodpeckers are rooted in unsubstantiated claims about these birds. This paper explores the narrative surrounding woodpecker biomimicry, including its origins and history, and highlights the challenges of translating findings from unconventional animal models of TBI into effective human medical interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anatomical Record
Anatomical Record Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
4.30
自引率
0.00%
发文量
0
期刊介绍: The Anatomical Record
期刊最新文献
Biomechanical modeling of musculoskeletal function related to the terrestrial locomotion of Riojasuchus tenuisceps (Archosauria: Ornithosuchidae). A new Peirosauridae (Crocodyliformes, Notosuchia) from the Adamantina Formation (Bauru Group, Late Cretaceous), with a revised phylogenetic analysis of Sebecia. Endocranial anatomy and phylogenetic position of the crocodylian Eosuchus lerichei from the late Paleocene of northwestern Europe and potential adaptations for transoceanic dispersal in gavialoids. Palaeohistology of Macrospondylus bollensis (Crocodylomorpha: Thalattosuchia: Teleosauroidea) from the Posidonienschiefer Formation (Toarcian) of Germany, with insights into life history and ecology. Anatomy and ontogeny of the "carnivorous aetosaur": New information on Coahomasuchus kahleorum (Archosauria: Pseudosuchia) from the Upper Triassic Dockum Group of Texas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1