{"title":"非协调有限地平线接入遥感的信息时代","authors":"Pooja Hegde , Leonardo Badia , Andrea Munari","doi":"10.1016/j.icte.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze a remote sensing system in the Internet of things, where uncoordinated nodes send status updates to a common receiver to achieve information freshness, quantified through age of information. We consider a finite horizon scheduling over a random multiple access channel, where colliding messages are lost. We show that nodes must adopt a further randomization to deviate from identical schedules and escape collision deadlocks. Moreover, we discuss the impact of feedback availability if, due to, e.g., energy expenditure, it decreases the number of transmission opportunities.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 4","pages":"Pages 786-791"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959524000250/pdfft?md5=33d3b28c6a0ca48efab965584013cdce&pid=1-s2.0-S2405959524000250-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Age of information for remote sensing with uncoordinated finite-horizon access\",\"authors\":\"Pooja Hegde , Leonardo Badia , Andrea Munari\",\"doi\":\"10.1016/j.icte.2024.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyze a remote sensing system in the Internet of things, where uncoordinated nodes send status updates to a common receiver to achieve information freshness, quantified through age of information. We consider a finite horizon scheduling over a random multiple access channel, where colliding messages are lost. We show that nodes must adopt a further randomization to deviate from identical schedules and escape collision deadlocks. Moreover, we discuss the impact of feedback availability if, due to, e.g., energy expenditure, it decreases the number of transmission opportunities.</p></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 4\",\"pages\":\"Pages 786-791\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405959524000250/pdfft?md5=33d3b28c6a0ca48efab965584013cdce&pid=1-s2.0-S2405959524000250-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959524000250\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524000250","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Age of information for remote sensing with uncoordinated finite-horizon access
We analyze a remote sensing system in the Internet of things, where uncoordinated nodes send status updates to a common receiver to achieve information freshness, quantified through age of information. We consider a finite horizon scheduling over a random multiple access channel, where colliding messages are lost. We show that nodes must adopt a further randomization to deviate from identical schedules and escape collision deadlocks. Moreover, we discuss the impact of feedback availability if, due to, e.g., energy expenditure, it decreases the number of transmission opportunities.
期刊介绍:
The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.