设计和分析用于管道导航的柔性支柱 V 型张拉机器人

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanism and Machine Theory Pub Date : 2024-08-21 DOI:10.1016/j.mechmachtheory.2024.105757
Yezheng Kang , Jianhuan Chen , Tianyi Yan , Hao Wang , Yanjun Wang , Genliang Chen
{"title":"设计和分析用于管道导航的柔性支柱 V 型张拉机器人","authors":"Yezheng Kang ,&nbsp;Jianhuan Chen ,&nbsp;Tianyi Yan ,&nbsp;Hao Wang ,&nbsp;Yanjun Wang ,&nbsp;Genliang Chen","doi":"10.1016/j.mechmachtheory.2024.105757","DOIUrl":null,"url":null,"abstract":"<div><p>Tensegrity robots have increasingly attracted attention in recent years. Traditionally, these robots rely on rigid struts and cables to maintain equilibrium configurations. However, the inflexibility inherent in these rigid struts curtails the robot’s capacity for deformation, thereby amplifying structural intricacy and imposing limitations on potential applications, particularly in the realm of pipe inspection. Drawing inspiration from the V-expander tensegrity structure, this paper presents a design, analysis, and validation of a flexible struts tensegrity robot. The integration of flexible struts enables the robot to exhibit a compact structure, passive compliance, and excellent adaptability. Through the actuation of three active cables, the robot exhibits inchworm-like motion capabilities for pipes ranging from 50 mm to 110 mm in diameters. A kinetostatics modeling approach is presented to predict the shapes of flexible struts and control the motion behaviors of the robot. To validate the capabilities of the proposed robot and assess the effectiveness of the kinetostatics model, a prototype was constructed and subjected to a series of experiments. The results demonstrate that the prototype exhibits remarkable shape changeability, mobility, and adaptability, while precisely controlling the contact force.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"202 ","pages":"Article 105757"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and analysis of a flexible struts V-expander tensegrity robot for navigating pipes\",\"authors\":\"Yezheng Kang ,&nbsp;Jianhuan Chen ,&nbsp;Tianyi Yan ,&nbsp;Hao Wang ,&nbsp;Yanjun Wang ,&nbsp;Genliang Chen\",\"doi\":\"10.1016/j.mechmachtheory.2024.105757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tensegrity robots have increasingly attracted attention in recent years. Traditionally, these robots rely on rigid struts and cables to maintain equilibrium configurations. However, the inflexibility inherent in these rigid struts curtails the robot’s capacity for deformation, thereby amplifying structural intricacy and imposing limitations on potential applications, particularly in the realm of pipe inspection. Drawing inspiration from the V-expander tensegrity structure, this paper presents a design, analysis, and validation of a flexible struts tensegrity robot. The integration of flexible struts enables the robot to exhibit a compact structure, passive compliance, and excellent adaptability. Through the actuation of three active cables, the robot exhibits inchworm-like motion capabilities for pipes ranging from 50 mm to 110 mm in diameters. A kinetostatics modeling approach is presented to predict the shapes of flexible struts and control the motion behaviors of the robot. To validate the capabilities of the proposed robot and assess the effectiveness of the kinetostatics model, a prototype was constructed and subjected to a series of experiments. The results demonstrate that the prototype exhibits remarkable shape changeability, mobility, and adaptability, while precisely controlling the contact force.</p></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":\"202 \",\"pages\":\"Article 105757\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24001848\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24001848","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,张力机器人越来越受到人们的关注。传统上,这些机器人依靠刚性支柱和缆绳来保持平衡配置。然而,这些刚性支柱固有的不灵活性限制了机器人的变形能力,从而扩大了结构的复杂性,并对潜在应用造成了限制,尤其是在管道检测领域。本文从 V 型张拉结构中汲取灵感,介绍了柔性支柱张拉机器人的设计、分析和验证。柔性支柱的集成使机器人结构紧凑,具有被动顺应性和出色的适应性。通过三根主动缆绳的驱动,该机器人在直径为 50 毫米至 110 毫米的管道上实现了类似尺蠖的运动能力。本文介绍了一种运动学建模方法,用于预测柔性支柱的形状和控制机器人的运动行为。为了验证拟议机器人的能力和评估运动学模型的有效性,我们制作了一个原型并进行了一系列实验。实验结果表明,该原型机器人在精确控制接触力的同时,还具有出色的形状可变性、移动性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and analysis of a flexible struts V-expander tensegrity robot for navigating pipes

Tensegrity robots have increasingly attracted attention in recent years. Traditionally, these robots rely on rigid struts and cables to maintain equilibrium configurations. However, the inflexibility inherent in these rigid struts curtails the robot’s capacity for deformation, thereby amplifying structural intricacy and imposing limitations on potential applications, particularly in the realm of pipe inspection. Drawing inspiration from the V-expander tensegrity structure, this paper presents a design, analysis, and validation of a flexible struts tensegrity robot. The integration of flexible struts enables the robot to exhibit a compact structure, passive compliance, and excellent adaptability. Through the actuation of three active cables, the robot exhibits inchworm-like motion capabilities for pipes ranging from 50 mm to 110 mm in diameters. A kinetostatics modeling approach is presented to predict the shapes of flexible struts and control the motion behaviors of the robot. To validate the capabilities of the proposed robot and assess the effectiveness of the kinetostatics model, a prototype was constructed and subjected to a series of experiments. The results demonstrate that the prototype exhibits remarkable shape changeability, mobility, and adaptability, while precisely controlling the contact force.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
期刊最新文献
A methodology for investigating the influence of hydrodynamic effects in gerotor type positive displacement machines Two PRBMs of Euler spiral segments and their chained models for analyzing general curved beams in compliant mechanisms Human–Machine coupled modeling of mandibular musculoskeletal multibody system and its application in the designation of mandibular movement function trainer Multi-objective optimization design method for the dimensions and control parameters of curling hexapod robot based on application performance Bionic concept and synthesis methods of the biomimetic robot joint mechanism for accurately reproducing the motion pattern of the human knee joint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1