Junjie Nie , Xinwei Liu , Mu Xu , Xiaoxiang Chen , Shangshang Hu , Xinliang Gu , Huiling Sun , Tianyi Gao , Yuqin Pan , Shukui Wang
{"title":"GTF2H5 被确定为对抗结直肠癌化疗耐药性的关键合成致死靶点","authors":"Junjie Nie , Xinwei Liu , Mu Xu , Xiaoxiang Chen , Shangshang Hu , Xinliang Gu , Huiling Sun , Tianyi Gao , Yuqin Pan , Shukui Wang","doi":"10.1016/j.tranon.2024.102097","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Synthetic lethality (SL) emerges as a novel concept being explored to combat cancer progression and resistance to conventional therapy. Despite the efficacy of chemotherapy in select cases of colorectal cancer (CRC), a substantial proportion of patients encounter challenges, leading to an adverse prognosis of CRC patients. CRC-related SL genes offer a potential avenue for identifying therapeutic targets.</p></div><div><h3>Methods</h3><p>CRC-related SL genes were obtained from the SynLethDB database. The bulk RNA sequencing data, mutation data, and clinical information for treated and untreated CRC patients were enrolled from the UCSC and GEO databases. The Tumor Immunology Single Cell Center database served as the repository for collecting and analyzing single-cell RNA sequencing data. The synergistic killing effect of SL genes and chemotherapeutic drugs on resistant cells was experimentally verified.</p></div><div><h3>Results</h3><p>In the present study, pivotal SL genes associated with chemoresistance identified by using WGCNA and CRC patients categorized into two groups based on these genes. Variations between the groups were most pronounced in pathways associated with extracellular matrix remodeling. Further by integrating mutation data, five potential SL genes were discerned, which were highly expressed in the presence of TP53 or KRAS mutations, leading to a severely poor prognosis. Subsequent time series analysis revealed that the expression of GTF2H5 was gradually elevated at different stages of the transition from sensitive to resistant in CRC cells. Finally, it was preliminarily verified by experiments that GTF2H5 may play a key role in driving the drug-resistant transition within CRC cells.</p></div><div><h3>Conclusions</h3><p>The identification of SL genes that collaboratively interact with chemotherapeutic agents could provide new insights into solving the issue of chemotherapy resistance in CRC patients. And GTF2H5 wields a fundamental influence in inducing chemoresistance in CRC, which provided a potential therapeutic target for CRC.</p></div>","PeriodicalId":48975,"journal":{"name":"Translational Oncology","volume":"49 ","pages":"Article 102097"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1936523324002249/pdfft?md5=237ce71eb6d2bcb8d019aea27a8c26ea&pid=1-s2.0-S1936523324002249-main.pdf","citationCount":"0","resultStr":"{\"title\":\"GTF2H5 Identified as a crucial synthetic lethal target to counteract chemoresistance in colorectal cancer\",\"authors\":\"Junjie Nie , Xinwei Liu , Mu Xu , Xiaoxiang Chen , Shangshang Hu , Xinliang Gu , Huiling Sun , Tianyi Gao , Yuqin Pan , Shukui Wang\",\"doi\":\"10.1016/j.tranon.2024.102097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Synthetic lethality (SL) emerges as a novel concept being explored to combat cancer progression and resistance to conventional therapy. Despite the efficacy of chemotherapy in select cases of colorectal cancer (CRC), a substantial proportion of patients encounter challenges, leading to an adverse prognosis of CRC patients. CRC-related SL genes offer a potential avenue for identifying therapeutic targets.</p></div><div><h3>Methods</h3><p>CRC-related SL genes were obtained from the SynLethDB database. The bulk RNA sequencing data, mutation data, and clinical information for treated and untreated CRC patients were enrolled from the UCSC and GEO databases. The Tumor Immunology Single Cell Center database served as the repository for collecting and analyzing single-cell RNA sequencing data. The synergistic killing effect of SL genes and chemotherapeutic drugs on resistant cells was experimentally verified.</p></div><div><h3>Results</h3><p>In the present study, pivotal SL genes associated with chemoresistance identified by using WGCNA and CRC patients categorized into two groups based on these genes. Variations between the groups were most pronounced in pathways associated with extracellular matrix remodeling. Further by integrating mutation data, five potential SL genes were discerned, which were highly expressed in the presence of TP53 or KRAS mutations, leading to a severely poor prognosis. Subsequent time series analysis revealed that the expression of GTF2H5 was gradually elevated at different stages of the transition from sensitive to resistant in CRC cells. Finally, it was preliminarily verified by experiments that GTF2H5 may play a key role in driving the drug-resistant transition within CRC cells.</p></div><div><h3>Conclusions</h3><p>The identification of SL genes that collaboratively interact with chemotherapeutic agents could provide new insights into solving the issue of chemotherapy resistance in CRC patients. And GTF2H5 wields a fundamental influence in inducing chemoresistance in CRC, which provided a potential therapeutic target for CRC.</p></div>\",\"PeriodicalId\":48975,\"journal\":{\"name\":\"Translational Oncology\",\"volume\":\"49 \",\"pages\":\"Article 102097\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1936523324002249/pdfft?md5=237ce71eb6d2bcb8d019aea27a8c26ea&pid=1-s2.0-S1936523324002249-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1936523324002249\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1936523324002249","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
GTF2H5 Identified as a crucial synthetic lethal target to counteract chemoresistance in colorectal cancer
Background
Synthetic lethality (SL) emerges as a novel concept being explored to combat cancer progression and resistance to conventional therapy. Despite the efficacy of chemotherapy in select cases of colorectal cancer (CRC), a substantial proportion of patients encounter challenges, leading to an adverse prognosis of CRC patients. CRC-related SL genes offer a potential avenue for identifying therapeutic targets.
Methods
CRC-related SL genes were obtained from the SynLethDB database. The bulk RNA sequencing data, mutation data, and clinical information for treated and untreated CRC patients were enrolled from the UCSC and GEO databases. The Tumor Immunology Single Cell Center database served as the repository for collecting and analyzing single-cell RNA sequencing data. The synergistic killing effect of SL genes and chemotherapeutic drugs on resistant cells was experimentally verified.
Results
In the present study, pivotal SL genes associated with chemoresistance identified by using WGCNA and CRC patients categorized into two groups based on these genes. Variations between the groups were most pronounced in pathways associated with extracellular matrix remodeling. Further by integrating mutation data, five potential SL genes were discerned, which were highly expressed in the presence of TP53 or KRAS mutations, leading to a severely poor prognosis. Subsequent time series analysis revealed that the expression of GTF2H5 was gradually elevated at different stages of the transition from sensitive to resistant in CRC cells. Finally, it was preliminarily verified by experiments that GTF2H5 may play a key role in driving the drug-resistant transition within CRC cells.
Conclusions
The identification of SL genes that collaboratively interact with chemotherapeutic agents could provide new insights into solving the issue of chemotherapy resistance in CRC patients. And GTF2H5 wields a fundamental influence in inducing chemoresistance in CRC, which provided a potential therapeutic target for CRC.
期刊介绍:
Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.