人工智能赋能无线通信:从比特到语义

IF 23.2 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Proceedings of the IEEE Pub Date : 2024-08-20 DOI:10.1109/JPROC.2024.3437730
Zhijin Qin;Le Liang;Zijing Wang;Shi Jin;Xiaoming Tao;Wen Tong;Geoffrey Ye Li
{"title":"人工智能赋能无线通信:从比特到语义","authors":"Zhijin Qin;Le Liang;Zijing Wang;Shi Jin;Xiaoming Tao;Wen Tong;Geoffrey Ye Li","doi":"10.1109/JPROC.2024.3437730","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) and machine learning (ML) have shown tremendous potential in reshaping the landscape of wireless communications and are, therefore, widely expected to be an indispensable part of the next-generation wireless network. This article presents an overview of how AI/ML and wireless communications interact synergistically to improve system performance and provides useful tips and tricks on realizing such performance gains when training AI/ML models. In particular, we discuss in detail the use of AI/ML to revolutionize key physical layer and lower medium access control (MAC) layer functionalities in traditional wireless communication systems. In addition, we provide a comprehensive overview of the AI/ML-enabled semantic communication systems, including key techniques from data generation to transmission. We also investigate the role of AI/ML as an optimization tool to facilitate the design of efficient resource allocation algorithms in wireless communication networks at both bit and semantic levels. Finally, we analyze major challenges and roadblocks in applying AI/ML in practical wireless system design and share our thoughts and insights on potential solutions.","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 7","pages":"621-652"},"PeriodicalIF":23.2000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10639525","citationCount":"0","resultStr":"{\"title\":\"AI Empowered Wireless Communications: From Bits to Semantics\",\"authors\":\"Zhijin Qin;Le Liang;Zijing Wang;Shi Jin;Xiaoming Tao;Wen Tong;Geoffrey Ye Li\",\"doi\":\"10.1109/JPROC.2024.3437730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence (AI) and machine learning (ML) have shown tremendous potential in reshaping the landscape of wireless communications and are, therefore, widely expected to be an indispensable part of the next-generation wireless network. This article presents an overview of how AI/ML and wireless communications interact synergistically to improve system performance and provides useful tips and tricks on realizing such performance gains when training AI/ML models. In particular, we discuss in detail the use of AI/ML to revolutionize key physical layer and lower medium access control (MAC) layer functionalities in traditional wireless communication systems. In addition, we provide a comprehensive overview of the AI/ML-enabled semantic communication systems, including key techniques from data generation to transmission. We also investigate the role of AI/ML as an optimization tool to facilitate the design of efficient resource allocation algorithms in wireless communication networks at both bit and semantic levels. Finally, we analyze major challenges and roadblocks in applying AI/ML in practical wireless system design and share our thoughts and insights on potential solutions.\",\"PeriodicalId\":20556,\"journal\":{\"name\":\"Proceedings of the IEEE\",\"volume\":\"112 7\",\"pages\":\"621-652\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10639525\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10639525/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10639525/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)和机器学习(ML)在重塑无线通信格局方面展现出巨大的潜力,因此被广泛认为是下一代无线网络不可或缺的一部分。本文概述了人工智能/ML 与无线通信如何协同互动以提高系统性能,并提供了在训练人工智能/ML 模型时实现性能提升的有用技巧和窍门。特别是,我们详细讨论了如何利用人工智能/ML 彻底改变传统无线通信系统中的关键物理层和较低的介质访问控制 (MAC) 层功能。此外,我们还全面概述了人工智能/ML 支持的语义通信系统,包括从数据生成到传输的关键技术。我们还研究了人工智能/移动语言作为优化工具在比特和语义层面上促进无线通信网络中高效资源分配算法设计的作用。最后,我们分析了在实际无线系统设计中应用人工智能/移动语言的主要挑战和障碍,并分享了我们对潜在解决方案的想法和见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI Empowered Wireless Communications: From Bits to Semantics
Artificial intelligence (AI) and machine learning (ML) have shown tremendous potential in reshaping the landscape of wireless communications and are, therefore, widely expected to be an indispensable part of the next-generation wireless network. This article presents an overview of how AI/ML and wireless communications interact synergistically to improve system performance and provides useful tips and tricks on realizing such performance gains when training AI/ML models. In particular, we discuss in detail the use of AI/ML to revolutionize key physical layer and lower medium access control (MAC) layer functionalities in traditional wireless communication systems. In addition, we provide a comprehensive overview of the AI/ML-enabled semantic communication systems, including key techniques from data generation to transmission. We also investigate the role of AI/ML as an optimization tool to facilitate the design of efficient resource allocation algorithms in wireless communication networks at both bit and semantic levels. Finally, we analyze major challenges and roadblocks in applying AI/ML in practical wireless system design and share our thoughts and insights on potential solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the IEEE
Proceedings of the IEEE 工程技术-工程:电子与电气
CiteScore
46.40
自引率
1.00%
发文量
160
审稿时长
3-8 weeks
期刊介绍: Proceedings of the IEEE is the leading journal to provide in-depth review, survey, and tutorial coverage of the technical developments in electronics, electrical and computer engineering, and computer science. Consistently ranked as one of the top journals by Impact Factor, Article Influence Score and more, the journal serves as a trusted resource for engineers around the world.
期刊最新文献
Front Cover Table of Contents IEEE Membership Future Special Issues/Special Sections of the Proceedings TechRxiv
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1