急性部分睡眠不足会减弱骑自行车运动时的血压反应。

IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS American journal of physiology. Heart and circulatory physiology Pub Date : 2024-10-01 Epub Date: 2024-08-23 DOI:10.1152/ajpheart.00453.2024
Julian C Bommarito, Rileigh K Stapleton, Nathan S Murray, Jamie F Burr, Philip J Millar
{"title":"急性部分睡眠不足会减弱骑自行车运动时的血压反应。","authors":"Julian C Bommarito, Rileigh K Stapleton, Nathan S Murray, Jamie F Burr, Philip J Millar","doi":"10.1152/ajpheart.00453.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Exaggerated blood pressure (BP) responses during exercise are independently associated with future development of hypertension. Partial sleep deprivation (PSD) can increase 24-h ambulatory BP, but the effects on exercise BP are unclear. We hypothesized that acute PSD would augment the BP response to constant load cycling exercise and a 20-min time trial. Twenty-two healthy adults (22 ± 3 yr old; 13 males; V̇o<sub>2peak</sub>, 43.6 ± 8.2 mL·kg<sup>-1</sup>·min<sup>-1</sup>) completed a randomized crossover trial in which they either slept normally (normal sleep-wake schedule for each participant) or sleep was partially deprived (early awakening, 40% of normal sleep duration). Each participant completed a 12-min warm-up consisting of two 6-min steps (<i>step 1</i>, 62 ± 25 W; <i>step 2</i>, 137 ± 60 W) followed by a 20-min time trial on a cycle ergometer. PSD did not alter power output during the 20-min time trial [(control vs. PSD) 170 ± 68 vs. 168 ± 68 W, <i>P</i> = 0.65]. Systolic BP did not differ during <i>step 1</i> of the warm-up (141 ± 15 vs. 137 ± 12 mmHg, <i>P</i> = 0.39) but was lower following PSD during <i>step 2</i> (165 ± 21 vs. 159 ± 22 mmHg, <i>P</i> = 0.004) and the 20-min time trial (171 ± 20 vs. 164 ± 23 mmHg, <i>P</i> < 0.001). These results were maintained when peak oxygen uptake (V̇o<sub>2peak</sub>) was included as a covariate. Systolic BP responses were modulated by sex (time × visit × sex interaction <i>P</i> = 0.03), with attenuated systolic BP during the warm-up and the 20-min time trial in males but not in females. In contrast to our hypothesis, acute PSD attenuates systolic BP responses during constant load and 20-min time trial cycling exercise; however, these observations appear to be primarily driven by changes in males.<b>NEW & NOTEWORTHY</b> A single night of partial sleep deprivation (PSD) can increase ambulatory blood pressure (BP) the following day. Despite this phenomenon, the present study found that acute PSD attenuates systolic BP responses to both constant load cycling and a 20-min cycling time trial in young healthy adults. Interestingly, the attenuated systolic BP responses following PSD appeared to be modulated by sex such that attenuations were observed in males but not in females.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute partial sleep deprivation attenuates blood pressure responses to cycling exercise.\",\"authors\":\"Julian C Bommarito, Rileigh K Stapleton, Nathan S Murray, Jamie F Burr, Philip J Millar\",\"doi\":\"10.1152/ajpheart.00453.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exaggerated blood pressure (BP) responses during exercise are independently associated with future development of hypertension. Partial sleep deprivation (PSD) can increase 24-h ambulatory BP, but the effects on exercise BP are unclear. We hypothesized that acute PSD would augment the BP response to constant load cycling exercise and a 20-min time trial. Twenty-two healthy adults (22 ± 3 yr old; 13 males; V̇o<sub>2peak</sub>, 43.6 ± 8.2 mL·kg<sup>-1</sup>·min<sup>-1</sup>) completed a randomized crossover trial in which they either slept normally (normal sleep-wake schedule for each participant) or sleep was partially deprived (early awakening, 40% of normal sleep duration). Each participant completed a 12-min warm-up consisting of two 6-min steps (<i>step 1</i>, 62 ± 25 W; <i>step 2</i>, 137 ± 60 W) followed by a 20-min time trial on a cycle ergometer. PSD did not alter power output during the 20-min time trial [(control vs. PSD) 170 ± 68 vs. 168 ± 68 W, <i>P</i> = 0.65]. Systolic BP did not differ during <i>step 1</i> of the warm-up (141 ± 15 vs. 137 ± 12 mmHg, <i>P</i> = 0.39) but was lower following PSD during <i>step 2</i> (165 ± 21 vs. 159 ± 22 mmHg, <i>P</i> = 0.004) and the 20-min time trial (171 ± 20 vs. 164 ± 23 mmHg, <i>P</i> < 0.001). These results were maintained when peak oxygen uptake (V̇o<sub>2peak</sub>) was included as a covariate. Systolic BP responses were modulated by sex (time × visit × sex interaction <i>P</i> = 0.03), with attenuated systolic BP during the warm-up and the 20-min time trial in males but not in females. In contrast to our hypothesis, acute PSD attenuates systolic BP responses during constant load and 20-min time trial cycling exercise; however, these observations appear to be primarily driven by changes in males.<b>NEW & NOTEWORTHY</b> A single night of partial sleep deprivation (PSD) can increase ambulatory blood pressure (BP) the following day. Despite this phenomenon, the present study found that acute PSD attenuates systolic BP responses to both constant load cycling and a 20-min cycling time trial in young healthy adults. Interestingly, the attenuated systolic BP responses following PSD appeared to be modulated by sex such that attenuations were observed in males but not in females.</p>\",\"PeriodicalId\":7692,\"journal\":{\"name\":\"American journal of physiology. Heart and circulatory physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Heart and circulatory physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpheart.00453.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00453.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

运动时血压(BP)反应过高与高血压的未来发展有独立关联。部分剥夺睡眠(PSD)可增加 24 小时非卧床血压,但对运动血压的影响尚不清楚。我们假设急性 PSD 会增强恒定负荷自行车运动和 20 分钟计时赛的血压反应。22 名健康成年人(22±3 岁;13 名男性;V.J.O2 峰值:43.6±8.2 ml.kg-1.min-1)完成了一项随机交叉试验,他们在试验中正常睡眠(每位参与者的睡眠-觉醒时间表正常)或部分剥夺睡眠(早醒,正常睡眠时间的 40%)。每位参与者都进行了 12 分钟的热身运动,包括两个 6 分钟的台阶(台阶 1:62±25 W;台阶 2:137±60 W),然后在自行车测力计上进行了 20 分钟的计时试验。在 20 分钟计时赛中,PSD 不会改变功率输出([对照组 vs. PSD] 170±68 W vs. 168±68 W,P=0.65)。热身步骤 1 期间收缩压没有差异(141±15 vs. 137±12 mmHg,P=0.39),但在步骤 2(165±21 vs. 159±22 mmHg,P=0.004)和 20 分钟计时赛期间 PSD 后收缩压较低(171±20 vs. 164±23 mmHg,P2 峰作为协变量。收缩压反应受性别影响(时间 x 访问 x 性别交互作用 P=0.03),热身和 20 分钟计时赛期间男性收缩压降低,女性收缩压降低。与我们的假设相反,急性 PSD 会减弱恒定负荷和 20 分钟计时单车运动中的收缩压反应,尽管这些观察结果似乎主要是由男性的变化引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acute partial sleep deprivation attenuates blood pressure responses to cycling exercise.

Exaggerated blood pressure (BP) responses during exercise are independently associated with future development of hypertension. Partial sleep deprivation (PSD) can increase 24-h ambulatory BP, but the effects on exercise BP are unclear. We hypothesized that acute PSD would augment the BP response to constant load cycling exercise and a 20-min time trial. Twenty-two healthy adults (22 ± 3 yr old; 13 males; V̇o2peak, 43.6 ± 8.2 mL·kg-1·min-1) completed a randomized crossover trial in which they either slept normally (normal sleep-wake schedule for each participant) or sleep was partially deprived (early awakening, 40% of normal sleep duration). Each participant completed a 12-min warm-up consisting of two 6-min steps (step 1, 62 ± 25 W; step 2, 137 ± 60 W) followed by a 20-min time trial on a cycle ergometer. PSD did not alter power output during the 20-min time trial [(control vs. PSD) 170 ± 68 vs. 168 ± 68 W, P = 0.65]. Systolic BP did not differ during step 1 of the warm-up (141 ± 15 vs. 137 ± 12 mmHg, P = 0.39) but was lower following PSD during step 2 (165 ± 21 vs. 159 ± 22 mmHg, P = 0.004) and the 20-min time trial (171 ± 20 vs. 164 ± 23 mmHg, P < 0.001). These results were maintained when peak oxygen uptake (V̇o2peak) was included as a covariate. Systolic BP responses were modulated by sex (time × visit × sex interaction P = 0.03), with attenuated systolic BP during the warm-up and the 20-min time trial in males but not in females. In contrast to our hypothesis, acute PSD attenuates systolic BP responses during constant load and 20-min time trial cycling exercise; however, these observations appear to be primarily driven by changes in males.NEW & NOTEWORTHY A single night of partial sleep deprivation (PSD) can increase ambulatory blood pressure (BP) the following day. Despite this phenomenon, the present study found that acute PSD attenuates systolic BP responses to both constant load cycling and a 20-min cycling time trial in young healthy adults. Interestingly, the attenuated systolic BP responses following PSD appeared to be modulated by sex such that attenuations were observed in males but not in females.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
202
审稿时长
2-4 weeks
期刊介绍: The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.
期刊最新文献
Very low-density lipoprotein receptor mediates triglyceride-rich lipoprotein-induced oxidative stress and insulin resistance. Maternal AMPK pathway activation with uterine artery blood flow and fetal growth maintenance during hypoxia. Biventricular responses to exercise and their relation to cardiorespiratory fitness in pediatric pulmonary hypertension. Hypertension disrupts the vascular clock in both sexes. Impaired microvascular insulin-dependent dilation in women with a history of gestational diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1