Scott C Howard, Anna Avagyan, Biruh Workeneh, Ching-Hon Pui
{"title":"肿瘤溶解综合征","authors":"Scott C Howard, Anna Avagyan, Biruh Workeneh, Ching-Hon Pui","doi":"10.1038/s41572-024-00542-w","DOIUrl":null,"url":null,"abstract":"<p><p>Tumour lysis syndrome (TLS) represents a critical oncological emergency characterized by extensive tumour cell breakdown, leading to the swift release of intracellular contents into the systemic circulation, outpacing homeostatic mechanisms. This process results in hyperuricaemia (a by-product of intracellular DNA release), hyperkalaemia, hyperphosphataemia, hypocalcaemia and the accumulation of xanthine. These electrolyte and metabolic imbalances pose a significant risk of acute kidney injury, cardiac arrhythmias, seizures, multiorgan failure and, rarely, death. While TLS can occur spontaneously, it usually arises shortly after the initiation of effective treatment, particularly in patients with a large cancer cell mass (defined as ≥500 g or ≥300 g/m<sup>2</sup> of body surface area in children). To prevent TLS, close monitoring and hydration to improve renal perfusion and urine output and to minimize uric acid or calcium phosphate precipitation in renal tubules are essential. Intervention is based on the risk of a patient of having TLS and can include rasburicase and allopurinol. Xanthine, typically enzymatically converted to uric acid, can accumulate when xanthine oxidases, such as allopurinol, are administered during TLS management. Whether measurement of xanthine is clinically useful to optimize the use of allopurinol or rasburicase remains to be determined.</p>","PeriodicalId":18910,"journal":{"name":"Nature Reviews Disease Primers","volume":"10 1","pages":"58"},"PeriodicalIF":76.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tumour lysis syndrome.\",\"authors\":\"Scott C Howard, Anna Avagyan, Biruh Workeneh, Ching-Hon Pui\",\"doi\":\"10.1038/s41572-024-00542-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumour lysis syndrome (TLS) represents a critical oncological emergency characterized by extensive tumour cell breakdown, leading to the swift release of intracellular contents into the systemic circulation, outpacing homeostatic mechanisms. This process results in hyperuricaemia (a by-product of intracellular DNA release), hyperkalaemia, hyperphosphataemia, hypocalcaemia and the accumulation of xanthine. These electrolyte and metabolic imbalances pose a significant risk of acute kidney injury, cardiac arrhythmias, seizures, multiorgan failure and, rarely, death. While TLS can occur spontaneously, it usually arises shortly after the initiation of effective treatment, particularly in patients with a large cancer cell mass (defined as ≥500 g or ≥300 g/m<sup>2</sup> of body surface area in children). To prevent TLS, close monitoring and hydration to improve renal perfusion and urine output and to minimize uric acid or calcium phosphate precipitation in renal tubules are essential. Intervention is based on the risk of a patient of having TLS and can include rasburicase and allopurinol. Xanthine, typically enzymatically converted to uric acid, can accumulate when xanthine oxidases, such as allopurinol, are administered during TLS management. Whether measurement of xanthine is clinically useful to optimize the use of allopurinol or rasburicase remains to be determined.</p>\",\"PeriodicalId\":18910,\"journal\":{\"name\":\"Nature Reviews Disease Primers\",\"volume\":\"10 1\",\"pages\":\"58\"},\"PeriodicalIF\":76.9000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Disease Primers\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41572-024-00542-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Disease Primers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41572-024-00542-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Tumour lysis syndrome (TLS) represents a critical oncological emergency characterized by extensive tumour cell breakdown, leading to the swift release of intracellular contents into the systemic circulation, outpacing homeostatic mechanisms. This process results in hyperuricaemia (a by-product of intracellular DNA release), hyperkalaemia, hyperphosphataemia, hypocalcaemia and the accumulation of xanthine. These electrolyte and metabolic imbalances pose a significant risk of acute kidney injury, cardiac arrhythmias, seizures, multiorgan failure and, rarely, death. While TLS can occur spontaneously, it usually arises shortly after the initiation of effective treatment, particularly in patients with a large cancer cell mass (defined as ≥500 g or ≥300 g/m2 of body surface area in children). To prevent TLS, close monitoring and hydration to improve renal perfusion and urine output and to minimize uric acid or calcium phosphate precipitation in renal tubules are essential. Intervention is based on the risk of a patient of having TLS and can include rasburicase and allopurinol. Xanthine, typically enzymatically converted to uric acid, can accumulate when xanthine oxidases, such as allopurinol, are administered during TLS management. Whether measurement of xanthine is clinically useful to optimize the use of allopurinol or rasburicase remains to be determined.
期刊介绍:
Nature Reviews Disease Primers, a part of the Nature Reviews journal portfolio, features sections on epidemiology, mechanisms, diagnosis, management, and patient quality of life. The editorial team commissions top researchers — comprising basic scientists and clinical researchers — to write the Primers, which are designed for use by early career researchers, medical students and principal investigators. Each Primer concludes with an Outlook section, highlighting future research directions. Covered medical specialties include Cardiology, Dermatology, Ear, Nose and Throat, Emergency Medicine, Endocrinology, Gastroenterology, Genetic Conditions, Gynaecology and Obstetrics, Hepatology, Haematology, Infectious Diseases, Maxillofacial and Oral Medicine, Nephrology, Neurology, Nutrition, Oncology, Ophthalmology, Orthopaedics, Psychiatry, Respiratory Medicine, Rheumatology, Sleep Medicine, and Urology.