用微生物生产芳香族均聚酯。

IF 14.3 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Trends in biotechnology Pub Date : 2024-11-01 Epub Date: 2024-08-21 DOI:10.1016/j.tibtech.2024.06.001
Youngjoon Lee, Minju Kang, Woo Dae Jang, So Young Choi, Jung Eun Yang, Sang Yup Lee
{"title":"用微生物生产芳香族均聚酯。","authors":"Youngjoon Lee, Minju Kang, Woo Dae Jang, So Young Choi, Jung Eun Yang, Sang Yup Lee","doi":"10.1016/j.tibtech.2024.06.001","DOIUrl":null,"url":null,"abstract":"<p><p>We report the development of a metabolically engineered bacterium for the fermentative production of polyesters containing aromatic side chains, serving as sustainable alternatives to petroleum-based plastics. A metabolic pathway was constructed in an Escherichia coli strain to produce poly[d-phenyllactate(PhLA)], followed by three strategies to enhance polymer production. First, polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were introduced to increase the polymer accumulation. Next, metabolic engineering was performed to redirect the metabolic flux toward PhLA. Furthermore, PHA synthase was engineered based on in silico simulation results to enhance the polymerization of PhLA. The final strain was capable of producing 12.3 g/l of poly(PhLA), marking it the first bio-based process for producing an aromatic homopolyester. Additional heterologous gene introductions led to the high level production of poly(3-hydroxybutyrate-co-11.7 mol% PhLA) copolymer (61.4 g/l). The strategies described here will be useful for the bio-based production of aromatic polyesters from renewable resources.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial production of an aromatic homopolyester.\",\"authors\":\"Youngjoon Lee, Minju Kang, Woo Dae Jang, So Young Choi, Jung Eun Yang, Sang Yup Lee\",\"doi\":\"10.1016/j.tibtech.2024.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report the development of a metabolically engineered bacterium for the fermentative production of polyesters containing aromatic side chains, serving as sustainable alternatives to petroleum-based plastics. A metabolic pathway was constructed in an Escherichia coli strain to produce poly[d-phenyllactate(PhLA)], followed by three strategies to enhance polymer production. First, polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were introduced to increase the polymer accumulation. Next, metabolic engineering was performed to redirect the metabolic flux toward PhLA. Furthermore, PHA synthase was engineered based on in silico simulation results to enhance the polymerization of PhLA. The final strain was capable of producing 12.3 g/l of poly(PhLA), marking it the first bio-based process for producing an aromatic homopolyester. Additional heterologous gene introductions led to the high level production of poly(3-hydroxybutyrate-co-11.7 mol% PhLA) copolymer (61.4 g/l). The strategies described here will be useful for the bio-based production of aromatic polyesters from renewable resources.</p>\",\"PeriodicalId\":23324,\"journal\":{\"name\":\"Trends in biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibtech.2024.06.001\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.06.001","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了一种代谢工程细菌的开发情况,这种细菌可发酵生产含有芳香族侧链的聚酯,作为石油基塑料的可持续替代品。我们在大肠杆菌菌株中构建了一条生产聚[d-苯基乳酸(PhLA)]的代谢途径,随后采用了三种策略来提高聚合物的产量。首先,引入聚羟基烷酸(PHA)颗粒相关蛋白(phasins)以增加聚合物的积累。接着,进行代谢工程,将代谢通量转向 PhLA。此外,还根据硅学模拟结果设计了 PHA 合成酶,以提高 PhLA 的聚合度。最终的菌株能够生产出 12.3 克/升的聚(PhLA),这标志着它成为第一个生产芳香族均聚酯的生物工艺。通过引入更多异源基因,还能生产出高浓度的聚(3-羟基丁酸-co-11.7 mol% PhLA)共聚物(61.4 克/升)。本文介绍的策略将有助于利用可再生资源以生物为基础生产芳香族聚酯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microbial production of an aromatic homopolyester.

We report the development of a metabolically engineered bacterium for the fermentative production of polyesters containing aromatic side chains, serving as sustainable alternatives to petroleum-based plastics. A metabolic pathway was constructed in an Escherichia coli strain to produce poly[d-phenyllactate(PhLA)], followed by three strategies to enhance polymer production. First, polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were introduced to increase the polymer accumulation. Next, metabolic engineering was performed to redirect the metabolic flux toward PhLA. Furthermore, PHA synthase was engineered based on in silico simulation results to enhance the polymerization of PhLA. The final strain was capable of producing 12.3 g/l of poly(PhLA), marking it the first bio-based process for producing an aromatic homopolyester. Additional heterologous gene introductions led to the high level production of poly(3-hydroxybutyrate-co-11.7 mol% PhLA) copolymer (61.4 g/l). The strategies described here will be useful for the bio-based production of aromatic polyesters from renewable resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in biotechnology
Trends in biotechnology 工程技术-生物工程与应用微生物
CiteScore
28.60
自引率
1.20%
发文量
198
审稿时长
1 months
期刊介绍: Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems. The major themes that TIBTECH is interested in include: Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering) Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology) Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics) Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery) Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).
期刊最新文献
A high-performance protein preparation approach in a single column-free step. Cas9-PE: a robust multiplex gene editing tool for simultaneous precise editing and site-specific random mutation in rice. Intracellularly synthesized ssDNA for continuous genome engineering. Rapid point-of-care pathogen sensing in the post-pandemic era. Revolutionizing IBD research with on-chip models of disease modeling and drug screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1