{"title":"利用贝叶斯网络综合解释客观火器证据比较算法。","authors":"Jamie S. Spaulding PhD, Lauren S. LaCasse BA","doi":"10.1111/1556-4029.15606","DOIUrl":null,"url":null,"abstract":"<p>Traditionally, firearm and toolmark examiners manually evaluate the similarity of features on two bullets using comparison microscopy. Advances in microscopy have made it possible to collect 3D topographic data, and several automated comparison algorithms have been introduced for the comparison of bullet striae using these data. In this study, open-source approaches for cross-correlation, congruent matching profile segments, consecutive matching striations, and a random forest model were evaluated. A statistical characterization of these automated approaches was performed using four datasets of consecutively manufactured firearms to provide a challenging comparison scenario. Each automated approach was applied to all samples in a pairwise fashion, and classification performance was compared. Based on these findings, a Bayesian network was empirically learned and constructed to leverage the strengths of each individual approach, model the relationship between the automated results, and combine them into a posterior probability for the given comparison. The network was evaluated similarly to the automated approaches, and the results were compared. The developed Bayesian network classified 99.6% of the samples correctly, and the resultant probability distributions were significantly separated more so than the automated approaches when used in isolation.</p>","PeriodicalId":15743,"journal":{"name":"Journal of forensic sciences","volume":"69 6","pages":"2028-2040"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined interpretation of objective firearm evidence comparison algorithms using Bayesian networks\",\"authors\":\"Jamie S. Spaulding PhD, Lauren S. LaCasse BA\",\"doi\":\"10.1111/1556-4029.15606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditionally, firearm and toolmark examiners manually evaluate the similarity of features on two bullets using comparison microscopy. Advances in microscopy have made it possible to collect 3D topographic data, and several automated comparison algorithms have been introduced for the comparison of bullet striae using these data. In this study, open-source approaches for cross-correlation, congruent matching profile segments, consecutive matching striations, and a random forest model were evaluated. A statistical characterization of these automated approaches was performed using four datasets of consecutively manufactured firearms to provide a challenging comparison scenario. Each automated approach was applied to all samples in a pairwise fashion, and classification performance was compared. Based on these findings, a Bayesian network was empirically learned and constructed to leverage the strengths of each individual approach, model the relationship between the automated results, and combine them into a posterior probability for the given comparison. The network was evaluated similarly to the automated approaches, and the results were compared. The developed Bayesian network classified 99.6% of the samples correctly, and the resultant probability distributions were significantly separated more so than the automated approaches when used in isolation.</p>\",\"PeriodicalId\":15743,\"journal\":{\"name\":\"Journal of forensic sciences\",\"volume\":\"69 6\",\"pages\":\"2028-2040\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of forensic sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.15606\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.15606","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
Combined interpretation of objective firearm evidence comparison algorithms using Bayesian networks
Traditionally, firearm and toolmark examiners manually evaluate the similarity of features on two bullets using comparison microscopy. Advances in microscopy have made it possible to collect 3D topographic data, and several automated comparison algorithms have been introduced for the comparison of bullet striae using these data. In this study, open-source approaches for cross-correlation, congruent matching profile segments, consecutive matching striations, and a random forest model were evaluated. A statistical characterization of these automated approaches was performed using four datasets of consecutively manufactured firearms to provide a challenging comparison scenario. Each automated approach was applied to all samples in a pairwise fashion, and classification performance was compared. Based on these findings, a Bayesian network was empirically learned and constructed to leverage the strengths of each individual approach, model the relationship between the automated results, and combine them into a posterior probability for the given comparison. The network was evaluated similarly to the automated approaches, and the results were compared. The developed Bayesian network classified 99.6% of the samples correctly, and the resultant probability distributions were significantly separated more so than the automated approaches when used in isolation.
期刊介绍:
The Journal of Forensic Sciences (JFS) is the official publication of the American Academy of Forensic Sciences (AAFS). It is devoted to the publication of original investigations, observations, scholarly inquiries and reviews in various branches of the forensic sciences. These include anthropology, criminalistics, digital and multimedia sciences, engineering and applied sciences, pathology/biology, psychiatry and behavioral science, jurisprudence, odontology, questioned documents, and toxicology. Similar submissions dealing with forensic aspects of other sciences and the social sciences are also accepted, as are submissions dealing with scientifically sound emerging science disciplines. The content and/or views expressed in the JFS are not necessarily those of the AAFS, the JFS Editorial Board, the organizations with which authors are affiliated, or the publisher of JFS. All manuscript submissions are double-blind peer-reviewed.