{"title":"二维多项式分数延迟扩散方程的 L1-FEM 离散化","authors":"Tan Tan, Hongliang Liu, Weiping Bu","doi":"10.1016/j.cnsns.2024.108285","DOIUrl":null,"url":null,"abstract":"<div><p>A two-dimensional multiterm fractional delay diffusion equation is considered. The representation of the exact solution of the equation is derived and it is shown that the solution exhibits singular behaviors at multiple nodes due to the initial singularity and time delay. This results in the numerical schemes for solving the equation typically have a lower order of convergence in time. The problem is approximated in time by the L1 and Alikhanov schemes on symmetrical graded meshes, while in space the standard finite element method is applied. Numerical stability and convergence are presented for the schemes. Numerical experiments are performed to show the effectiveness of the schemes.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L1-FEM discretizations for two-dimensional multiterm fractional delay diffusion equations\",\"authors\":\"Tan Tan, Hongliang Liu, Weiping Bu\",\"doi\":\"10.1016/j.cnsns.2024.108285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A two-dimensional multiterm fractional delay diffusion equation is considered. The representation of the exact solution of the equation is derived and it is shown that the solution exhibits singular behaviors at multiple nodes due to the initial singularity and time delay. This results in the numerical schemes for solving the equation typically have a lower order of convergence in time. The problem is approximated in time by the L1 and Alikhanov schemes on symmetrical graded meshes, while in space the standard finite element method is applied. Numerical stability and convergence are presented for the schemes. Numerical experiments are performed to show the effectiveness of the schemes.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424004702\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424004702","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
L1-FEM discretizations for two-dimensional multiterm fractional delay diffusion equations
A two-dimensional multiterm fractional delay diffusion equation is considered. The representation of the exact solution of the equation is derived and it is shown that the solution exhibits singular behaviors at multiple nodes due to the initial singularity and time delay. This results in the numerical schemes for solving the equation typically have a lower order of convergence in time. The problem is approximated in time by the L1 and Alikhanov schemes on symmetrical graded meshes, while in space the standard finite element method is applied. Numerical stability and convergence are presented for the schemes. Numerical experiments are performed to show the effectiveness of the schemes.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.