{"title":"矢量值艾伦-卡恩方程的稳定指数时差方案的无条件 MBP 保留和能量稳定性","authors":"Jiayin Li , Jingwei Li","doi":"10.1016/j.cnsns.2024.108271","DOIUrl":null,"url":null,"abstract":"<div><p>The vector-valued Allen–Cahn equations have been extensively applied to simulate the multiphase flow models. In this paper, we consider the maximum bound principle (MBP) and corresponding numerical schemes for the vector-valued Allen–Cahn equations. We firstly formulate the stabilized equations via utilizing the linear stabilization technique, and then focus on the bounding constant of the nonlinear function based on the fact that the extremes of a constrained problem will occur in the bounded and convex domain. Later the first- and second-order stabilized exponential time differencing schemes are adopted for temporal integration, which are linear and unconditionally preserve the discrete MBP in the time discrete sense. Moreover, the proposed schemes can be proven to dissipate the original energy instead of the modified energy. Their convergence analysis is also presented. Various numerical examples in two and three dimensions are performed to verify these theoretical results and demonstrate the efficiency of the proposed schemes.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconditional MBP preservation and energy stability of the stabilized exponential time differencing schemes for the vector-valued Allen–Cahn equations\",\"authors\":\"Jiayin Li , Jingwei Li\",\"doi\":\"10.1016/j.cnsns.2024.108271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The vector-valued Allen–Cahn equations have been extensively applied to simulate the multiphase flow models. In this paper, we consider the maximum bound principle (MBP) and corresponding numerical schemes for the vector-valued Allen–Cahn equations. We firstly formulate the stabilized equations via utilizing the linear stabilization technique, and then focus on the bounding constant of the nonlinear function based on the fact that the extremes of a constrained problem will occur in the bounded and convex domain. Later the first- and second-order stabilized exponential time differencing schemes are adopted for temporal integration, which are linear and unconditionally preserve the discrete MBP in the time discrete sense. Moreover, the proposed schemes can be proven to dissipate the original energy instead of the modified energy. Their convergence analysis is also presented. Various numerical examples in two and three dimensions are performed to verify these theoretical results and demonstrate the efficiency of the proposed schemes.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424004568\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424004568","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Unconditional MBP preservation and energy stability of the stabilized exponential time differencing schemes for the vector-valued Allen–Cahn equations
The vector-valued Allen–Cahn equations have been extensively applied to simulate the multiphase flow models. In this paper, we consider the maximum bound principle (MBP) and corresponding numerical schemes for the vector-valued Allen–Cahn equations. We firstly formulate the stabilized equations via utilizing the linear stabilization technique, and then focus on the bounding constant of the nonlinear function based on the fact that the extremes of a constrained problem will occur in the bounded and convex domain. Later the first- and second-order stabilized exponential time differencing schemes are adopted for temporal integration, which are linear and unconditionally preserve the discrete MBP in the time discrete sense. Moreover, the proposed schemes can be proven to dissipate the original energy instead of the modified energy. Their convergence analysis is also presented. Various numerical examples in two and three dimensions are performed to verify these theoretical results and demonstrate the efficiency of the proposed schemes.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.