{"title":"医学影像中的少镜头学习系统回顾","authors":"Eva Pachetti , Sara Colantonio","doi":"10.1016/j.artmed.2024.102949","DOIUrl":null,"url":null,"abstract":"<div><p>The lack of annotated medical images limits the performance of deep learning models, which usually need large-scale labelled datasets. Few-shot learning techniques can reduce data scarcity issues and enhance medical image analysis speed and robustness. This systematic review gives a comprehensive overview of few-shot learning methods for medical image analysis, aiming to establish a standard methodological pipeline for future research reference. With a particular emphasis on the role of meta-learning, we analysed 80 relevant articles published from 2018 to 2023, conducting a risk of bias assessment and extracting relevant information, especially regarding the employed learning techniques. From this, we delineated a comprehensive methodological pipeline shared among all studies. In addition, we performed a statistical analysis of the studies’ results concerning the clinical task and the meta-learning method employed while also presenting supplemental information such as imaging modalities and model robustness evaluation techniques. We discussed the findings of our analysis, providing a deep insight into the limitations of the state-of-the-art methods and the most promising approaches. Drawing on our investigation, we yielded recommendations on potential future research directions aiming to bridge the gap between research and clinical practice.</p></div>","PeriodicalId":55458,"journal":{"name":"Artificial Intelligence in Medicine","volume":"156 ","pages":"Article 102949"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S093336572400191X/pdfft?md5=7f631ad6f02006409c385680e691e86a&pid=1-s2.0-S093336572400191X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A systematic review of few-shot learning in medical imaging\",\"authors\":\"Eva Pachetti , Sara Colantonio\",\"doi\":\"10.1016/j.artmed.2024.102949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The lack of annotated medical images limits the performance of deep learning models, which usually need large-scale labelled datasets. Few-shot learning techniques can reduce data scarcity issues and enhance medical image analysis speed and robustness. This systematic review gives a comprehensive overview of few-shot learning methods for medical image analysis, aiming to establish a standard methodological pipeline for future research reference. With a particular emphasis on the role of meta-learning, we analysed 80 relevant articles published from 2018 to 2023, conducting a risk of bias assessment and extracting relevant information, especially regarding the employed learning techniques. From this, we delineated a comprehensive methodological pipeline shared among all studies. In addition, we performed a statistical analysis of the studies’ results concerning the clinical task and the meta-learning method employed while also presenting supplemental information such as imaging modalities and model robustness evaluation techniques. We discussed the findings of our analysis, providing a deep insight into the limitations of the state-of-the-art methods and the most promising approaches. Drawing on our investigation, we yielded recommendations on potential future research directions aiming to bridge the gap between research and clinical practice.</p></div>\",\"PeriodicalId\":55458,\"journal\":{\"name\":\"Artificial Intelligence in Medicine\",\"volume\":\"156 \",\"pages\":\"Article 102949\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S093336572400191X/pdfft?md5=7f631ad6f02006409c385680e691e86a&pid=1-s2.0-S093336572400191X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S093336572400191X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S093336572400191X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A systematic review of few-shot learning in medical imaging
The lack of annotated medical images limits the performance of deep learning models, which usually need large-scale labelled datasets. Few-shot learning techniques can reduce data scarcity issues and enhance medical image analysis speed and robustness. This systematic review gives a comprehensive overview of few-shot learning methods for medical image analysis, aiming to establish a standard methodological pipeline for future research reference. With a particular emphasis on the role of meta-learning, we analysed 80 relevant articles published from 2018 to 2023, conducting a risk of bias assessment and extracting relevant information, especially regarding the employed learning techniques. From this, we delineated a comprehensive methodological pipeline shared among all studies. In addition, we performed a statistical analysis of the studies’ results concerning the clinical task and the meta-learning method employed while also presenting supplemental information such as imaging modalities and model robustness evaluation techniques. We discussed the findings of our analysis, providing a deep insight into the limitations of the state-of-the-art methods and the most promising approaches. Drawing on our investigation, we yielded recommendations on potential future research directions aiming to bridge the gap between research and clinical practice.
期刊介绍:
Artificial Intelligence in Medicine publishes original articles from a wide variety of interdisciplinary perspectives concerning the theory and practice of artificial intelligence (AI) in medicine, medically-oriented human biology, and health care.
Artificial intelligence in medicine may be characterized as the scientific discipline pertaining to research studies, projects, and applications that aim at supporting decision-based medical tasks through knowledge- and/or data-intensive computer-based solutions that ultimately support and improve the performance of a human care provider.