医学影像中的少镜头学习系统回顾

IF 6.1 2区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence in Medicine Pub Date : 2024-08-16 DOI:10.1016/j.artmed.2024.102949
Eva Pachetti , Sara Colantonio
{"title":"医学影像中的少镜头学习系统回顾","authors":"Eva Pachetti ,&nbsp;Sara Colantonio","doi":"10.1016/j.artmed.2024.102949","DOIUrl":null,"url":null,"abstract":"<div><p>The lack of annotated medical images limits the performance of deep learning models, which usually need large-scale labelled datasets. Few-shot learning techniques can reduce data scarcity issues and enhance medical image analysis speed and robustness. This systematic review gives a comprehensive overview of few-shot learning methods for medical image analysis, aiming to establish a standard methodological pipeline for future research reference. With a particular emphasis on the role of meta-learning, we analysed 80 relevant articles published from 2018 to 2023, conducting a risk of bias assessment and extracting relevant information, especially regarding the employed learning techniques. From this, we delineated a comprehensive methodological pipeline shared among all studies. In addition, we performed a statistical analysis of the studies’ results concerning the clinical task and the meta-learning method employed while also presenting supplemental information such as imaging modalities and model robustness evaluation techniques. We discussed the findings of our analysis, providing a deep insight into the limitations of the state-of-the-art methods and the most promising approaches. Drawing on our investigation, we yielded recommendations on potential future research directions aiming to bridge the gap between research and clinical practice.</p></div>","PeriodicalId":55458,"journal":{"name":"Artificial Intelligence in Medicine","volume":"156 ","pages":"Article 102949"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S093336572400191X/pdfft?md5=7f631ad6f02006409c385680e691e86a&pid=1-s2.0-S093336572400191X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A systematic review of few-shot learning in medical imaging\",\"authors\":\"Eva Pachetti ,&nbsp;Sara Colantonio\",\"doi\":\"10.1016/j.artmed.2024.102949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The lack of annotated medical images limits the performance of deep learning models, which usually need large-scale labelled datasets. Few-shot learning techniques can reduce data scarcity issues and enhance medical image analysis speed and robustness. This systematic review gives a comprehensive overview of few-shot learning methods for medical image analysis, aiming to establish a standard methodological pipeline for future research reference. With a particular emphasis on the role of meta-learning, we analysed 80 relevant articles published from 2018 to 2023, conducting a risk of bias assessment and extracting relevant information, especially regarding the employed learning techniques. From this, we delineated a comprehensive methodological pipeline shared among all studies. In addition, we performed a statistical analysis of the studies’ results concerning the clinical task and the meta-learning method employed while also presenting supplemental information such as imaging modalities and model robustness evaluation techniques. We discussed the findings of our analysis, providing a deep insight into the limitations of the state-of-the-art methods and the most promising approaches. Drawing on our investigation, we yielded recommendations on potential future research directions aiming to bridge the gap between research and clinical practice.</p></div>\",\"PeriodicalId\":55458,\"journal\":{\"name\":\"Artificial Intelligence in Medicine\",\"volume\":\"156 \",\"pages\":\"Article 102949\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S093336572400191X/pdfft?md5=7f631ad6f02006409c385680e691e86a&pid=1-s2.0-S093336572400191X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S093336572400191X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S093336572400191X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

缺乏有注释的医学图像限制了深度学习模型的性能,这些模型通常需要大规模的标记数据集。少量学习技术可以减少数据稀缺问题,提高医学图像分析的速度和鲁棒性。本系统综述全面概述了用于医学图像分析的少量学习方法,旨在建立一个标准的方法管道,供未来研究参考。我们特别强调了元学习的作用,分析了从 2018 年到 2023 年发表的 80 篇相关文章,进行了偏倚风险评估,并提取了相关信息,尤其是所采用的学习技术。由此,我们划定了所有研究共享的综合方法流水线。此外,我们还对研究结果进行了统计分析,涉及临床任务和采用的元学习方法,同时还提供了补充信息,如成像模式和模型稳健性评估技术。我们讨论了分析结果,深入探讨了最先进方法的局限性和最有前途的方法。根据我们的调查,我们就未来潜在的研究方向提出了建议,旨在弥合研究与临床实践之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A systematic review of few-shot learning in medical imaging

The lack of annotated medical images limits the performance of deep learning models, which usually need large-scale labelled datasets. Few-shot learning techniques can reduce data scarcity issues and enhance medical image analysis speed and robustness. This systematic review gives a comprehensive overview of few-shot learning methods for medical image analysis, aiming to establish a standard methodological pipeline for future research reference. With a particular emphasis on the role of meta-learning, we analysed 80 relevant articles published from 2018 to 2023, conducting a risk of bias assessment and extracting relevant information, especially regarding the employed learning techniques. From this, we delineated a comprehensive methodological pipeline shared among all studies. In addition, we performed a statistical analysis of the studies’ results concerning the clinical task and the meta-learning method employed while also presenting supplemental information such as imaging modalities and model robustness evaluation techniques. We discussed the findings of our analysis, providing a deep insight into the limitations of the state-of-the-art methods and the most promising approaches. Drawing on our investigation, we yielded recommendations on potential future research directions aiming to bridge the gap between research and clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence in Medicine
Artificial Intelligence in Medicine 工程技术-工程:生物医学
CiteScore
15.00
自引率
2.70%
发文量
143
审稿时长
6.3 months
期刊介绍: Artificial Intelligence in Medicine publishes original articles from a wide variety of interdisciplinary perspectives concerning the theory and practice of artificial intelligence (AI) in medicine, medically-oriented human biology, and health care. Artificial intelligence in medicine may be characterized as the scientific discipline pertaining to research studies, projects, and applications that aim at supporting decision-based medical tasks through knowledge- and/or data-intensive computer-based solutions that ultimately support and improve the performance of a human care provider.
期刊最新文献
Hyperbolic multivariate feature learning in higher-order heterogeneous networks for drug–disease prediction Editorial Board BDFormer: Boundary-aware dual-decoder transformer for skin lesion segmentation Finger-aware Artificial Neural Network for predicting arthritis in Patients with hand pain Artificial intelligence-driven approaches in antibiotic stewardship programs and optimizing prescription practices: A systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1