针对高维相关特征的基于 Manifold 的 Shapley 解释

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2024-08-14 DOI:10.1016/j.neunet.2024.106634
{"title":"针对高维相关特征的基于 Manifold 的 Shapley 解释","authors":"","doi":"10.1016/j.neunet.2024.106634","DOIUrl":null,"url":null,"abstract":"<div><p>Explainable artificial intelligence (XAI) holds significant importance in enhancing the reliability and transparency of network decision-making. SHapley Additive exPlanations (SHAP) is a game-theoretic approach for network interpretation, attributing confidence to inputs features to measure their importance. However, SHAP often relies on a flawed assumption that the model’s features are independent, leading to incorrect results when dealing with correlated features. In this paper, we introduce a novel manifold-based Shapley explanation method, termed Latent SHAP. Latent SHAP transforms high-dimensional data into low-dimensional manifolds to capture correlations among features. We compute Shapley values on the data manifold and devise three distinct gradient-based mapping methods to transfer them back to the high-dimensional space. Our primary objectives include: (1) correcting misinterpretations by SHAP in certain samples; (2) addressing the challenge of feature correlations in high-dimensional data interpretation; and (3) reducing algorithmic complexity through Manifold SHAP for application in complex network interpretations. Code is available at <span><span>https://github.com/Teriri1999/Latent-SHAP</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manifold-based shapley explanations for high dimensional correlated features\",\"authors\":\"\",\"doi\":\"10.1016/j.neunet.2024.106634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Explainable artificial intelligence (XAI) holds significant importance in enhancing the reliability and transparency of network decision-making. SHapley Additive exPlanations (SHAP) is a game-theoretic approach for network interpretation, attributing confidence to inputs features to measure their importance. However, SHAP often relies on a flawed assumption that the model’s features are independent, leading to incorrect results when dealing with correlated features. In this paper, we introduce a novel manifold-based Shapley explanation method, termed Latent SHAP. Latent SHAP transforms high-dimensional data into low-dimensional manifolds to capture correlations among features. We compute Shapley values on the data manifold and devise three distinct gradient-based mapping methods to transfer them back to the high-dimensional space. Our primary objectives include: (1) correcting misinterpretations by SHAP in certain samples; (2) addressing the challenge of feature correlations in high-dimensional data interpretation; and (3) reducing algorithmic complexity through Manifold SHAP for application in complex network interpretations. Code is available at <span><span>https://github.com/Teriri1999/Latent-SHAP</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024005586\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024005586","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

可解释人工智能(XAI)在提高网络决策的可靠性和透明度方面具有重要意义。SHapley Additive exPlanations(SHAP)是一种用于网络解释的博弈论方法,它将置信度赋予输入特征以衡量其重要性。然而,SHAP 通常依赖于一个错误的假设,即模型的特征是独立的,从而导致在处理相关特征时出现错误的结果。本文介绍了一种新颖的基于流形的 Shapley 解释方法,称为 Latent SHAP。Latent SHAP 将高维数据转换为低维流形,以捕捉特征之间的相关性。我们在数据流形上计算夏普利值,并设计了三种不同的基于梯度的映射方法,将它们转回高维空间。我们的主要目标包括(1) 纠正 SHAP 在某些样本中的错误解释;(2) 解决高维数据解释中特征相关性的难题;(3) 通过 Manifold SHAP 降低算法复杂性,以应用于复杂网络解释。代码见 https://github.com/Teriri1999/Latent-SHAP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Manifold-based shapley explanations for high dimensional correlated features

Explainable artificial intelligence (XAI) holds significant importance in enhancing the reliability and transparency of network decision-making. SHapley Additive exPlanations (SHAP) is a game-theoretic approach for network interpretation, attributing confidence to inputs features to measure their importance. However, SHAP often relies on a flawed assumption that the model’s features are independent, leading to incorrect results when dealing with correlated features. In this paper, we introduce a novel manifold-based Shapley explanation method, termed Latent SHAP. Latent SHAP transforms high-dimensional data into low-dimensional manifolds to capture correlations among features. We compute Shapley values on the data manifold and devise three distinct gradient-based mapping methods to transfer them back to the high-dimensional space. Our primary objectives include: (1) correcting misinterpretations by SHAP in certain samples; (2) addressing the challenge of feature correlations in high-dimensional data interpretation; and (3) reducing algorithmic complexity through Manifold SHAP for application in complex network interpretations. Code is available at https://github.com/Teriri1999/Latent-SHAP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Multi-focus image fusion with parameter adaptive dual channel dynamic threshold neural P systems. Joint computation offloading and resource allocation for end-edge collaboration in internet of vehicles via multi-agent reinforcement learning. An information-theoretic perspective of physical adversarial patches. Contrastive fine-grained domain adaptation network for EEG-based vigilance estimation. Decoupling visual and identity features for adversarial palm-vein image attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1