超薄硅酸铝玻璃的塑性变形和恢复

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Extreme Mechanics Letters Pub Date : 2024-08-05 DOI:10.1016/j.eml.2024.102219
Lufeng Xue , Jiaxuan Wang , Jianbiao Wang , Haihui Ruan
{"title":"超薄硅酸铝玻璃的塑性变形和恢复","authors":"Lufeng Xue ,&nbsp;Jiaxuan Wang ,&nbsp;Jianbiao Wang ,&nbsp;Haihui Ruan","doi":"10.1016/j.eml.2024.102219","DOIUrl":null,"url":null,"abstract":"<div><p>Glass was generally considered to be brittle, and its applications were significantly limited by its vulnerability to fracture caused by deformation. The folding tests with ultrathin glass (UTG) conducted in this work illustrate that glass can also deform plastically and generate permanent creases on a macroscopic level. Moreover, the plastic deformation can gradually and partially recover at room temperature and the level of recovery can be inhibited by a longer holding time or through repeated loading. Based on the experimental observation, a phenomenological model is established to predict the plastic behavior of the concerned glass and we further discuss the possible cause of plastic deformation and its recovery and the potential applications.</p></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"71 ","pages":"Article 102219"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plastic deformation and recovery in ultrathin aluminosilicate glass\",\"authors\":\"Lufeng Xue ,&nbsp;Jiaxuan Wang ,&nbsp;Jianbiao Wang ,&nbsp;Haihui Ruan\",\"doi\":\"10.1016/j.eml.2024.102219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glass was generally considered to be brittle, and its applications were significantly limited by its vulnerability to fracture caused by deformation. The folding tests with ultrathin glass (UTG) conducted in this work illustrate that glass can also deform plastically and generate permanent creases on a macroscopic level. Moreover, the plastic deformation can gradually and partially recover at room temperature and the level of recovery can be inhibited by a longer holding time or through repeated loading. Based on the experimental observation, a phenomenological model is established to predict the plastic behavior of the concerned glass and we further discuss the possible cause of plastic deformation and its recovery and the potential applications.</p></div>\",\"PeriodicalId\":56247,\"journal\":{\"name\":\"Extreme Mechanics Letters\",\"volume\":\"71 \",\"pages\":\"Article 102219\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352431624000993\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624000993","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

玻璃通常被认为是脆性材料,由于容易因变形而断裂,其应用受到很大限制。这项工作中进行的超薄玻璃(UTG)折叠试验表明,玻璃也能发生塑性变形,并在宏观上产生永久性折痕。此外,塑性变形可在室温下逐渐部分恢复,恢复程度可通过延长保持时间或重复加载来抑制。根据实验观察结果,我们建立了一个现象学模型来预测相关玻璃的塑性行为,并进一步讨论了塑性变形及其恢复的可能原因和潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plastic deformation and recovery in ultrathin aluminosilicate glass

Glass was generally considered to be brittle, and its applications were significantly limited by its vulnerability to fracture caused by deformation. The folding tests with ultrathin glass (UTG) conducted in this work illustrate that glass can also deform plastically and generate permanent creases on a macroscopic level. Moreover, the plastic deformation can gradually and partially recover at room temperature and the level of recovery can be inhibited by a longer holding time or through repeated loading. Based on the experimental observation, a phenomenological model is established to predict the plastic behavior of the concerned glass and we further discuss the possible cause of plastic deformation and its recovery and the potential applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
期刊最新文献
Full range fragmentation simulation of nanoflake filler-matrix composite coatings on a polymer substrate A kinematics-based single-actuator setup for constant-curvature bending tests in extremely large deformations Aperture size control in kirigami metamaterials: Towards enhanced performance and applications Origami electronic membranes as highly shape-morphable mechanical and environmental sensing systems Effect of rate on the response and localized transformation patterns in NiTi Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1