Rachel Eveleth, Rachel S. Gabor, Katherine M. Gaffney, Justin D. Chaffin, Abigail Goda, Orion Pendley, Keara Stanislawczyk
{"title":"伊利湖西部盆地的季节性碳预算演替","authors":"Rachel Eveleth, Rachel S. Gabor, Katherine M. Gaffney, Justin D. Chaffin, Abigail Goda, Orion Pendley, Keara Stanislawczyk","doi":"10.1029/2024JG008107","DOIUrl":null,"url":null,"abstract":"<p>Lake Erie's Western Basin is a eutrophic region and likely hotspot for carbon transformation. While this basin has received much attention for its high nutrient loads from the Maumee River and recurring harmful algal blooms, carbon has gone understudied. To investigate the seasonal and spatial variability in inorganic and organic carbon budgets, we completed three surveys in spring, summer, and fall on a transect from the Maumee River to South Bass Island. In each survey, we observed higher spatial variability of all carbon species within 11 km of the Maumee River mouth relative to sites outside of Maumee Bay. This variability was driven by pulses of direct river water carbon, steep nutrient gradients, and patchy bloom conditions. Seasonal variability was also greater in Maumee Bay, with the highest river discharge in June adding large amounts of dissolved inorganic and organic carbon and pCO<sub>2</sub> flux out of the water when productivity from the diatom bloom was smaller. In August, when and where we observed a <i>Microcystis</i> bloom, particulate organic carbon increased in concentration, and pCO<sub>2</sub> flux switched directions into the water. In October, Chl-<i>a</i> concentrations and oxygen saturations were lowest, indicating a seasonal slowdown in productivity, and river discharge was the lowest, resulting in the lowest total carbon observed and dissolved organic matter chemistry indicating less contribution from the terrestrial watershed. In the open water outside of Maumee Bay seasonal and spatial carbon budget dynamics were more stable, highlighting the importance of riverine inputs on lake carbon cycling.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 8","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008107","citationCount":"0","resultStr":"{\"title\":\"Seasonal Carbon Budget Succession in Lake Erie's Western Basin\",\"authors\":\"Rachel Eveleth, Rachel S. Gabor, Katherine M. Gaffney, Justin D. Chaffin, Abigail Goda, Orion Pendley, Keara Stanislawczyk\",\"doi\":\"10.1029/2024JG008107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lake Erie's Western Basin is a eutrophic region and likely hotspot for carbon transformation. While this basin has received much attention for its high nutrient loads from the Maumee River and recurring harmful algal blooms, carbon has gone understudied. To investigate the seasonal and spatial variability in inorganic and organic carbon budgets, we completed three surveys in spring, summer, and fall on a transect from the Maumee River to South Bass Island. In each survey, we observed higher spatial variability of all carbon species within 11 km of the Maumee River mouth relative to sites outside of Maumee Bay. This variability was driven by pulses of direct river water carbon, steep nutrient gradients, and patchy bloom conditions. Seasonal variability was also greater in Maumee Bay, with the highest river discharge in June adding large amounts of dissolved inorganic and organic carbon and pCO<sub>2</sub> flux out of the water when productivity from the diatom bloom was smaller. In August, when and where we observed a <i>Microcystis</i> bloom, particulate organic carbon increased in concentration, and pCO<sub>2</sub> flux switched directions into the water. In October, Chl-<i>a</i> concentrations and oxygen saturations were lowest, indicating a seasonal slowdown in productivity, and river discharge was the lowest, resulting in the lowest total carbon observed and dissolved organic matter chemistry indicating less contribution from the terrestrial watershed. In the open water outside of Maumee Bay seasonal and spatial carbon budget dynamics were more stable, highlighting the importance of riverine inputs on lake carbon cycling.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":\"129 8\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008107\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008107\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008107","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Seasonal Carbon Budget Succession in Lake Erie's Western Basin
Lake Erie's Western Basin is a eutrophic region and likely hotspot for carbon transformation. While this basin has received much attention for its high nutrient loads from the Maumee River and recurring harmful algal blooms, carbon has gone understudied. To investigate the seasonal and spatial variability in inorganic and organic carbon budgets, we completed three surveys in spring, summer, and fall on a transect from the Maumee River to South Bass Island. In each survey, we observed higher spatial variability of all carbon species within 11 km of the Maumee River mouth relative to sites outside of Maumee Bay. This variability was driven by pulses of direct river water carbon, steep nutrient gradients, and patchy bloom conditions. Seasonal variability was also greater in Maumee Bay, with the highest river discharge in June adding large amounts of dissolved inorganic and organic carbon and pCO2 flux out of the water when productivity from the diatom bloom was smaller. In August, when and where we observed a Microcystis bloom, particulate organic carbon increased in concentration, and pCO2 flux switched directions into the water. In October, Chl-a concentrations and oxygen saturations were lowest, indicating a seasonal slowdown in productivity, and river discharge was the lowest, resulting in the lowest total carbon observed and dissolved organic matter chemistry indicating less contribution from the terrestrial watershed. In the open water outside of Maumee Bay seasonal and spatial carbon budget dynamics were more stable, highlighting the importance of riverine inputs on lake carbon cycling.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology