H. Yaykaşlı, H. Eskalen, M. Göğebakan, A. Sünbül, Y. Kavun
{"title":"机械合金化制备的铝硅硼合金的微观结构、热性能和辐射屏蔽性能 机械合金化制备的铝硅硼合金的微观结构、热性能和辐射屏蔽性能","authors":"H. Yaykaşlı, H. Eskalen, M. Göğebakan, A. Sünbül, Y. Kavun","doi":"10.1002/mawe.202300262","DOIUrl":null,"url":null,"abstract":"<p>This study focused on developing microstructural, thermal, and radiation shielding changes in Al<sub>50</sub>Si<sub>25</sub>B<sub>25</sub> powders using mechanical alloying techniques. Based on the x-ray powder diffraction data, the crystallite size and microstrain of the 100-hours milled powder were calculated as 0.25 nm and 50.33 %, respectively. The solubility of silicon in the α-aluminium matrix increased with longer mechanical alloying duration. Transmission electron microscope analyses further showed that the alloy particulates had an average size of 3 μm and an average grain size of 0.226 nm. The radiation shielding properties of the Al<sub>50</sub>Si<sub>25</sub>B<sub>25</sub> powders indicated that the Linear Attenuation Coefficient value increased from 0.0554±0.1689 cm<sup>−1</sup> to 1.0632±0.2425 cm<sup>−1</sup> with an increase in the thickness of the Al<sub>50</sub>Si<sub>25</sub>B<sub>25</sub> alloy. This work successfully demonstrated the potential of mechanical alloying techniques to enhance the microstructural and thermal properties of Al<sub>50</sub>Si<sub>25</sub>B<sub>25</sub> powders. It highlighted their effectiveness in providing radiation shielding capabilities when varying the thickness of the alloy.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"55 8","pages":"1082-1091"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure, thermal and radiation shielding properties of aluminium-silicon-boron alloy prepared by mechanical alloying\\n Gefüge, thermische und strahlungsabschirmende Eigenschaften einer durch mechanisches Legieren hergestellten Al-Si-B-Legierung\",\"authors\":\"H. Yaykaşlı, H. Eskalen, M. Göğebakan, A. Sünbül, Y. Kavun\",\"doi\":\"10.1002/mawe.202300262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study focused on developing microstructural, thermal, and radiation shielding changes in Al<sub>50</sub>Si<sub>25</sub>B<sub>25</sub> powders using mechanical alloying techniques. Based on the x-ray powder diffraction data, the crystallite size and microstrain of the 100-hours milled powder were calculated as 0.25 nm and 50.33 %, respectively. The solubility of silicon in the α-aluminium matrix increased with longer mechanical alloying duration. Transmission electron microscope analyses further showed that the alloy particulates had an average size of 3 μm and an average grain size of 0.226 nm. The radiation shielding properties of the Al<sub>50</sub>Si<sub>25</sub>B<sub>25</sub> powders indicated that the Linear Attenuation Coefficient value increased from 0.0554±0.1689 cm<sup>−1</sup> to 1.0632±0.2425 cm<sup>−1</sup> with an increase in the thickness of the Al<sub>50</sub>Si<sub>25</sub>B<sub>25</sub> alloy. This work successfully demonstrated the potential of mechanical alloying techniques to enhance the microstructural and thermal properties of Al<sub>50</sub>Si<sub>25</sub>B<sub>25</sub> powders. It highlighted their effectiveness in providing radiation shielding capabilities when varying the thickness of the alloy.</p>\",\"PeriodicalId\":18366,\"journal\":{\"name\":\"Materialwissenschaft und Werkstofftechnik\",\"volume\":\"55 8\",\"pages\":\"1082-1091\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialwissenschaft und Werkstofftechnik\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300262\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300262","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructure, thermal and radiation shielding properties of aluminium-silicon-boron alloy prepared by mechanical alloying
Gefüge, thermische und strahlungsabschirmende Eigenschaften einer durch mechanisches Legieren hergestellten Al-Si-B-Legierung
This study focused on developing microstructural, thermal, and radiation shielding changes in Al50Si25B25 powders using mechanical alloying techniques. Based on the x-ray powder diffraction data, the crystallite size and microstrain of the 100-hours milled powder were calculated as 0.25 nm and 50.33 %, respectively. The solubility of silicon in the α-aluminium matrix increased with longer mechanical alloying duration. Transmission electron microscope analyses further showed that the alloy particulates had an average size of 3 μm and an average grain size of 0.226 nm. The radiation shielding properties of the Al50Si25B25 powders indicated that the Linear Attenuation Coefficient value increased from 0.0554±0.1689 cm−1 to 1.0632±0.2425 cm−1 with an increase in the thickness of the Al50Si25B25 alloy. This work successfully demonstrated the potential of mechanical alloying techniques to enhance the microstructural and thermal properties of Al50Si25B25 powders. It highlighted their effectiveness in providing radiation shielding capabilities when varying the thickness of the alloy.
期刊介绍:
Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing.
Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline.
Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.