{"title":"利用有限元法评估编织物绿色纺织复合材料的抗压机械性能 利用有限元法评估编织物绿色纺织复合材料的抗压机械性能","authors":"M. Kumar, A. Tevatia, A. Dixit","doi":"10.1002/mawe.202300325","DOIUrl":null,"url":null,"abstract":"<p>The research aims to forecast the mechanical performance of a hybrid woven fabric natural composite subjected to compression, utilizing the three-dimensional finite element method. A detailed finite element model of a plain woven fabric unit cell is created and analyzed for different materials like flax, basalt, and jute, and combinations of these materials (inter-yarn hybrid basalt-flax, jute-flax and basalt-jute fabrics). It is observed that fabric‘s response to compression is mainly influenced by the transverse longitudinal shear behaviour and the stiffness of the yarn cross-section. Compression of single-layer woven fabric involves yarn bending and compaction, resulting in varying fiber volume fractions in different areas due to compaction. The basalt-jute hybrid plain woven fabric outperformed other plant-based fiber fabrics with a polypropylene matrix in terms of mechanical performance under compression. Increase in yarn spacing and fabric thickness resulted in higher strain energy and displacement, attributed to changes in fiber volume fraction and crimp angle. Whereas, increasing yarn width led to a stiffer fabric due to increased contact area at the crossover region and higher bending rigidity, resulting in decreased strain energy and displacement. Importantly, this developed model can effectively simulate textile fabrics with diverse weaving patterns, material properties, and loading conditions.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"55 8","pages":"1185-1204"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing compressive mechanical behavior of woven fabric green textile composite using finite element method\\n Bewertung des mechanischen Druckverhaltens von gewebten grünen Textilverbundstoffen mit Hilfe der Finite-Elemente-Methode\",\"authors\":\"M. Kumar, A. Tevatia, A. Dixit\",\"doi\":\"10.1002/mawe.202300325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The research aims to forecast the mechanical performance of a hybrid woven fabric natural composite subjected to compression, utilizing the three-dimensional finite element method. A detailed finite element model of a plain woven fabric unit cell is created and analyzed for different materials like flax, basalt, and jute, and combinations of these materials (inter-yarn hybrid basalt-flax, jute-flax and basalt-jute fabrics). It is observed that fabric‘s response to compression is mainly influenced by the transverse longitudinal shear behaviour and the stiffness of the yarn cross-section. Compression of single-layer woven fabric involves yarn bending and compaction, resulting in varying fiber volume fractions in different areas due to compaction. The basalt-jute hybrid plain woven fabric outperformed other plant-based fiber fabrics with a polypropylene matrix in terms of mechanical performance under compression. Increase in yarn spacing and fabric thickness resulted in higher strain energy and displacement, attributed to changes in fiber volume fraction and crimp angle. Whereas, increasing yarn width led to a stiffer fabric due to increased contact area at the crossover region and higher bending rigidity, resulting in decreased strain energy and displacement. Importantly, this developed model can effectively simulate textile fabrics with diverse weaving patterns, material properties, and loading conditions.</p>\",\"PeriodicalId\":18366,\"journal\":{\"name\":\"Materialwissenschaft und Werkstofftechnik\",\"volume\":\"55 8\",\"pages\":\"1185-1204\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialwissenschaft und Werkstofftechnik\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300325\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300325","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Assessing compressive mechanical behavior of woven fabric green textile composite using finite element method
Bewertung des mechanischen Druckverhaltens von gewebten grünen Textilverbundstoffen mit Hilfe der Finite-Elemente-Methode
The research aims to forecast the mechanical performance of a hybrid woven fabric natural composite subjected to compression, utilizing the three-dimensional finite element method. A detailed finite element model of a plain woven fabric unit cell is created and analyzed for different materials like flax, basalt, and jute, and combinations of these materials (inter-yarn hybrid basalt-flax, jute-flax and basalt-jute fabrics). It is observed that fabric‘s response to compression is mainly influenced by the transverse longitudinal shear behaviour and the stiffness of the yarn cross-section. Compression of single-layer woven fabric involves yarn bending and compaction, resulting in varying fiber volume fractions in different areas due to compaction. The basalt-jute hybrid plain woven fabric outperformed other plant-based fiber fabrics with a polypropylene matrix in terms of mechanical performance under compression. Increase in yarn spacing and fabric thickness resulted in higher strain energy and displacement, attributed to changes in fiber volume fraction and crimp angle. Whereas, increasing yarn width led to a stiffer fabric due to increased contact area at the crossover region and higher bending rigidity, resulting in decreased strain energy and displacement. Importantly, this developed model can effectively simulate textile fabrics with diverse weaving patterns, material properties, and loading conditions.
期刊介绍:
Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing.
Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline.
Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.