Mohammadsadegh Pahlavanzadeh, Sebastian Rulik, Włodzimierz Wróblewski, Krzysztof Rusin
{"title":"将粗糙度模型应用于静止和旋转小水道水流","authors":"Mohammadsadegh Pahlavanzadeh, Sebastian Rulik, Włodzimierz Wróblewski, Krzysztof Rusin","doi":"10.1108/hff-05-2024-0379","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The performance of a bladeless Tesla turbine is closely tied to momentum diffusion, kinetic energy transfer and wall shear stress generation on its rotating disks. The surface roughness adds complexity of flow analysis in such a domain. This paper aims to assess the effect of roughness on flow structures and the application of roughness models in flow cross sections with submillimeter height, including both stationary and rotating walls.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This research starts with the examination of flow over a rough flat plate, and then proceeds to study flow within minichannels, evaluating the effect of roughness on flow characteristics. An in-house test stand validates the numerical solutions of minichannel. Finally, flow through the minichannel with corotating walls was analyzed. The <em>k</em>-<em>ω</em> SST turbulent model and Aupoix's roughness method are used for numerical simulations.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The findings emphasize the necessity of considering the constricted dimensions of the flow cross section, thereby improving the alignment of derived results with theoretical estimations. Moreover, this study explores the effects of roughness on flow characteristics within the minichannel with stationary and rotating walls, offering valuable insights into this intricate phenomenon, and depicts the appropriate performance of chosen roughness model in studied cases.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The originality of this investigation is the assessment and validation of flow characteristics inside minichannel with stationary and corotating walls when the roughness is implemented. This phenomenon, along with the effect of roughness on the transportation of kinetic energy to the rough surface of a minichannel in an in-house test setup, is assessed.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"4 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of roughness models to stationary and rotating minichannel flows\",\"authors\":\"Mohammadsadegh Pahlavanzadeh, Sebastian Rulik, Włodzimierz Wróblewski, Krzysztof Rusin\",\"doi\":\"10.1108/hff-05-2024-0379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The performance of a bladeless Tesla turbine is closely tied to momentum diffusion, kinetic energy transfer and wall shear stress generation on its rotating disks. The surface roughness adds complexity of flow analysis in such a domain. This paper aims to assess the effect of roughness on flow structures and the application of roughness models in flow cross sections with submillimeter height, including both stationary and rotating walls.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>This research starts with the examination of flow over a rough flat plate, and then proceeds to study flow within minichannels, evaluating the effect of roughness on flow characteristics. An in-house test stand validates the numerical solutions of minichannel. Finally, flow through the minichannel with corotating walls was analyzed. The <em>k</em>-<em>ω</em> SST turbulent model and Aupoix's roughness method are used for numerical simulations.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The findings emphasize the necessity of considering the constricted dimensions of the flow cross section, thereby improving the alignment of derived results with theoretical estimations. Moreover, this study explores the effects of roughness on flow characteristics within the minichannel with stationary and rotating walls, offering valuable insights into this intricate phenomenon, and depicts the appropriate performance of chosen roughness model in studied cases.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The originality of this investigation is the assessment and validation of flow characteristics inside minichannel with stationary and corotating walls when the roughness is implemented. This phenomenon, along with the effect of roughness on the transportation of kinetic energy to the rough surface of a minichannel in an in-house test setup, is assessed.</p><!--/ Abstract__block -->\",\"PeriodicalId\":14263,\"journal\":{\"name\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/hff-05-2024-0379\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-05-2024-0379","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Application of roughness models to stationary and rotating minichannel flows
Purpose
The performance of a bladeless Tesla turbine is closely tied to momentum diffusion, kinetic energy transfer and wall shear stress generation on its rotating disks. The surface roughness adds complexity of flow analysis in such a domain. This paper aims to assess the effect of roughness on flow structures and the application of roughness models in flow cross sections with submillimeter height, including both stationary and rotating walls.
Design/methodology/approach
This research starts with the examination of flow over a rough flat plate, and then proceeds to study flow within minichannels, evaluating the effect of roughness on flow characteristics. An in-house test stand validates the numerical solutions of minichannel. Finally, flow through the minichannel with corotating walls was analyzed. The k-ω SST turbulent model and Aupoix's roughness method are used for numerical simulations.
Findings
The findings emphasize the necessity of considering the constricted dimensions of the flow cross section, thereby improving the alignment of derived results with theoretical estimations. Moreover, this study explores the effects of roughness on flow characteristics within the minichannel with stationary and rotating walls, offering valuable insights into this intricate phenomenon, and depicts the appropriate performance of chosen roughness model in studied cases.
Originality/value
The originality of this investigation is the assessment and validation of flow characteristics inside minichannel with stationary and corotating walls when the roughness is implemented. This phenomenon, along with the effect of roughness on the transportation of kinetic energy to the rough surface of a minichannel in an in-house test setup, is assessed.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf