通过迭代 GLASSO 和投影,利用核心特征向量先验进行谱图学习

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal Processing Pub Date : 2024-08-22 DOI:10.1109/TSP.2024.3446453
Saghar Bagheri;Tam Thuc Do;Gene Cheung;Antonio Ortega
{"title":"通过迭代 GLASSO 和投影,利用核心特征向量先验进行谱图学习","authors":"Saghar Bagheri;Tam Thuc Do;Gene Cheung;Antonio Ortega","doi":"10.1109/TSP.2024.3446453","DOIUrl":null,"url":null,"abstract":"Before the execution of many standard graph signal processing (GSP) modules, such as compression and restoration, learning of a graph that encodes pairwise (dis)similarities in data is an important precursor. In data-starved scenarios, to reduce parameterization, previous graph learning algorithms make assumptions in the nodal domain on i) graph connectivity (e.g., edge sparsity), and/or ii) edge weights (e.g., positive edges only). In this paper, given an empirical covariance matrix \n<inline-formula><tex-math>$\\bar{{\\mathbf{C}}}$</tex-math></inline-formula>\n estimated from sparse data, we consider instead a spectral-domain assumption on the graph Laplacian matrix \n<inline-formula><tex-math>${\\mathcal{L}}$</tex-math></inline-formula>\n: the first \n<inline-formula><tex-math>$K$</tex-math></inline-formula>\n eigenvectors (called “core” eigenvectors) \n<inline-formula><tex-math>$\\{{\\mathbf{u}}_{k}\\}$</tex-math></inline-formula>\n of \n<inline-formula><tex-math>${\\mathcal{L}}$</tex-math></inline-formula>\n are pre-selected—e.g., based on domain-specific knowledge—and only the remaining eigenvectors are learned and parameterized. We first prove that, inside a Hilbert space of real symmetric matrices, the subspace \n<inline-formula><tex-math>${\\mathcal{H}}_{\\mathbf{u}}^{+}$</tex-math></inline-formula>\n of positive semi-definite (PSD) matrices sharing a common set of core \n<inline-formula><tex-math>$K$</tex-math></inline-formula>\n eigenvectors \n<inline-formula><tex-math>$\\{{\\mathbf{u}}_{k}\\}$</tex-math></inline-formula>\n is a convex cone. Inspired by the Gram-Schmidt procedure, we then construct an efficient operator to project a given positive definite (PD) matrix onto \n<inline-formula><tex-math>${\\mathcal{H}}_{\\mathbf{u}}^{+}$</tex-math></inline-formula>\n. Finally, we design a hybrid graphical lasso/projection algorithm to compute a locally optimal inverse Laplacian \n<inline-formula><tex-math>${\\mathcal{L}}^{-1}\\in{\\mathcal{H}}_{\\mathbf{u}}^{+}$</tex-math></inline-formula>\n given \n<inline-formula><tex-math>$\\bar{{\\mathbf{C}}}$</tex-math></inline-formula>\n. We apply our graph learning algorithm in two practical settings: parliamentary voting interpolation and predictive transform coding in image compression. Experiments show that our algorithm outperformed existing graph learning schemes in data-starved scenarios for both synthetic data and these two settings.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"72 ","pages":"3958-3972"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral Graph Learning With Core Eigenvectors Prior via Iterative GLASSO and Projection\",\"authors\":\"Saghar Bagheri;Tam Thuc Do;Gene Cheung;Antonio Ortega\",\"doi\":\"10.1109/TSP.2024.3446453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Before the execution of many standard graph signal processing (GSP) modules, such as compression and restoration, learning of a graph that encodes pairwise (dis)similarities in data is an important precursor. In data-starved scenarios, to reduce parameterization, previous graph learning algorithms make assumptions in the nodal domain on i) graph connectivity (e.g., edge sparsity), and/or ii) edge weights (e.g., positive edges only). In this paper, given an empirical covariance matrix \\n<inline-formula><tex-math>$\\\\bar{{\\\\mathbf{C}}}$</tex-math></inline-formula>\\n estimated from sparse data, we consider instead a spectral-domain assumption on the graph Laplacian matrix \\n<inline-formula><tex-math>${\\\\mathcal{L}}$</tex-math></inline-formula>\\n: the first \\n<inline-formula><tex-math>$K$</tex-math></inline-formula>\\n eigenvectors (called “core” eigenvectors) \\n<inline-formula><tex-math>$\\\\{{\\\\mathbf{u}}_{k}\\\\}$</tex-math></inline-formula>\\n of \\n<inline-formula><tex-math>${\\\\mathcal{L}}$</tex-math></inline-formula>\\n are pre-selected—e.g., based on domain-specific knowledge—and only the remaining eigenvectors are learned and parameterized. We first prove that, inside a Hilbert space of real symmetric matrices, the subspace \\n<inline-formula><tex-math>${\\\\mathcal{H}}_{\\\\mathbf{u}}^{+}$</tex-math></inline-formula>\\n of positive semi-definite (PSD) matrices sharing a common set of core \\n<inline-formula><tex-math>$K$</tex-math></inline-formula>\\n eigenvectors \\n<inline-formula><tex-math>$\\\\{{\\\\mathbf{u}}_{k}\\\\}$</tex-math></inline-formula>\\n is a convex cone. Inspired by the Gram-Schmidt procedure, we then construct an efficient operator to project a given positive definite (PD) matrix onto \\n<inline-formula><tex-math>${\\\\mathcal{H}}_{\\\\mathbf{u}}^{+}$</tex-math></inline-formula>\\n. Finally, we design a hybrid graphical lasso/projection algorithm to compute a locally optimal inverse Laplacian \\n<inline-formula><tex-math>${\\\\mathcal{L}}^{-1}\\\\in{\\\\mathcal{H}}_{\\\\mathbf{u}}^{+}$</tex-math></inline-formula>\\n given \\n<inline-formula><tex-math>$\\\\bar{{\\\\mathbf{C}}}$</tex-math></inline-formula>\\n. We apply our graph learning algorithm in two practical settings: parliamentary voting interpolation and predictive transform coding in image compression. Experiments show that our algorithm outperformed existing graph learning schemes in data-starved scenarios for both synthetic data and these two settings.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"72 \",\"pages\":\"3958-3972\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643489/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10643489/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在执行许多标准图信号处理(GSP)模块(如压缩和还原)之前,对数据中的成对(不)相似性进行编码的图学习是一个重要的前奏。在数据匮乏的情况下,为了减少参数化,以前的图学习算法在节点域对 i) 图连通性(如边稀疏性)和/或 ii) 边权重(如仅正边)做出假设。在本文中,给定根据稀疏数据估算出的经验协方差矩阵 $/bar{{/mathbf{C}}$,我们会考虑对图拉普拉斯矩阵 ${mathcal{L}}$ 进行谱域假设:预选 ${mathcal{L}}$ 的前 $K$ 特征向量(称为 "核心 "特征向量)$\{mathbf{u}}_{k}\}$--例如、的特征向量是预先选择的--例如基于特定领域的知识--而只有其余的特征向量才会被学习和参数化。我们首先证明,在实对称矩阵的希尔伯特空间内,共享一组共同的核心 $K$ 特征向量 $\{{mathcal{H}}_{mathbf{u}}^{+}$ 的正半有限(PSD)矩阵的子空间 ${mathcal{H}}_{mathbf{u}}^{+}$ 是一个凸锥。受 Gram-Schmidt 程序的启发,我们构建了一个有效的算子,将给定的正定(PD)矩阵投影到 ${math\cal{H}}_{\mathbf{u}}^{+}$ 上。最后,我们设计了一种混合图形套索/投影算法,用于计算给定 $\{bar\{mathbf{C}}$ 的局部最优逆拉普拉奇 ${/mathcal{L}}^{-1}in/{mathcal{H}}_{/mathbf{u}}^{+}$。我们将图学习算法应用于两个实际场景:议会投票插值和图像压缩中的预测变换编码。实验表明,在数据匮乏的情况下,我们的算法在合成数据和这两种环境中的表现都优于现有的图学习方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectral Graph Learning With Core Eigenvectors Prior via Iterative GLASSO and Projection
Before the execution of many standard graph signal processing (GSP) modules, such as compression and restoration, learning of a graph that encodes pairwise (dis)similarities in data is an important precursor. In data-starved scenarios, to reduce parameterization, previous graph learning algorithms make assumptions in the nodal domain on i) graph connectivity (e.g., edge sparsity), and/or ii) edge weights (e.g., positive edges only). In this paper, given an empirical covariance matrix $\bar{{\mathbf{C}}}$ estimated from sparse data, we consider instead a spectral-domain assumption on the graph Laplacian matrix ${\mathcal{L}}$ : the first $K$ eigenvectors (called “core” eigenvectors) $\{{\mathbf{u}}_{k}\}$ of ${\mathcal{L}}$ are pre-selected—e.g., based on domain-specific knowledge—and only the remaining eigenvectors are learned and parameterized. We first prove that, inside a Hilbert space of real symmetric matrices, the subspace ${\mathcal{H}}_{\mathbf{u}}^{+}$ of positive semi-definite (PSD) matrices sharing a common set of core $K$ eigenvectors $\{{\mathbf{u}}_{k}\}$ is a convex cone. Inspired by the Gram-Schmidt procedure, we then construct an efficient operator to project a given positive definite (PD) matrix onto ${\mathcal{H}}_{\mathbf{u}}^{+}$ . Finally, we design a hybrid graphical lasso/projection algorithm to compute a locally optimal inverse Laplacian ${\mathcal{L}}^{-1}\in{\mathcal{H}}_{\mathbf{u}}^{+}$ given $\bar{{\mathbf{C}}}$ . We apply our graph learning algorithm in two practical settings: parliamentary voting interpolation and predictive transform coding in image compression. Experiments show that our algorithm outperformed existing graph learning schemes in data-starved scenarios for both synthetic data and these two settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
期刊最新文献
Simplicial Vector Autoregressive Models A Directional Generation Algorithm for SAR Image based on Azimuth-Guided Statistical Generative Adversarial Network Structured Directional Pruning via Perturbation Orthogonal Projection Intelligent Reflecting Surface-Assisted NLOS Sensing With OFDM Signals Robust Multichannel Decorrelation via Tensor Einstein Product
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1