针对大容量固态硬盘的程序上下文辅助地址转换

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Future Generation Computer Systems-The International Journal of Escience Pub Date : 2024-08-14 DOI:10.1016/j.future.2024.107483
{"title":"针对大容量固态硬盘的程序上下文辅助地址转换","authors":"","doi":"10.1016/j.future.2024.107483","DOIUrl":null,"url":null,"abstract":"<div><p>As the capacity of NAND flash-based SSDs keeps increasing, it becomes crucial to design a memory-efficient address translation algorithm that offers high performance when a translation table cannot be entirely loaded in a controller DRAM. Existing flash translation layers (FTL) employ demand-based address translation which caches popular mapping information in DRAM by leveraging locality of I/O references. Owing to the lack of information about detailed behaviors of applications, however, existing demand-based FTLs often suffer from many translation-table misses and thus result in sub-optimal performance. In this paper, we propose a new <u>P</u>rogram context-<u>A</u>ssiste<u>D</u> <u>F</u>lash <u>T</u>ranslation <u>L</u>ayer, called PADFTL. Unlike existing FTLs which are implemented as the form of firmware, PADFTL is vertically integrated with a host-level I/O classifier which provides useful hints for an FTL in an SSD to make a better decision in managing a translation table. The host-level I/O classifier monitors unique behaviors of applications by analyzing their program contexts and categorizes I/O patterns into four types, (1) Loop, (2) Hot, (3) Sequential, and (4) Random, which are then delivered to an SSD through extended interfaces. The SSD-side module of PADFTL partitions a controller DRAM into four zones and isolates mapping information associated with different I/O patterns into separate zones. By employing cache management strategies optimized for individual zones, PADFTL can lower the overall translation-table miss ratio. To evaluate the effectiveness of PADFTL, we implement the host-level classifier in the Linux kernel and PADFTL’s FTL in a trace-driven FTL simulator. In our experimental results, compared to the state-of-the-art FTL, PADFTL increases the overall table hit ratio by 16% while reducing the address translation time by up to 20% on average.</p></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Program context-assisted address translation for high-capacity SSDs\",\"authors\":\"\",\"doi\":\"10.1016/j.future.2024.107483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the capacity of NAND flash-based SSDs keeps increasing, it becomes crucial to design a memory-efficient address translation algorithm that offers high performance when a translation table cannot be entirely loaded in a controller DRAM. Existing flash translation layers (FTL) employ demand-based address translation which caches popular mapping information in DRAM by leveraging locality of I/O references. Owing to the lack of information about detailed behaviors of applications, however, existing demand-based FTLs often suffer from many translation-table misses and thus result in sub-optimal performance. In this paper, we propose a new <u>P</u>rogram context-<u>A</u>ssiste<u>D</u> <u>F</u>lash <u>T</u>ranslation <u>L</u>ayer, called PADFTL. Unlike existing FTLs which are implemented as the form of firmware, PADFTL is vertically integrated with a host-level I/O classifier which provides useful hints for an FTL in an SSD to make a better decision in managing a translation table. The host-level I/O classifier monitors unique behaviors of applications by analyzing their program contexts and categorizes I/O patterns into four types, (1) Loop, (2) Hot, (3) Sequential, and (4) Random, which are then delivered to an SSD through extended interfaces. The SSD-side module of PADFTL partitions a controller DRAM into four zones and isolates mapping information associated with different I/O patterns into separate zones. By employing cache management strategies optimized for individual zones, PADFTL can lower the overall translation-table miss ratio. To evaluate the effectiveness of PADFTL, we implement the host-level classifier in the Linux kernel and PADFTL’s FTL in a trace-driven FTL simulator. In our experimental results, compared to the state-of-the-art FTL, PADFTL increases the overall table hit ratio by 16% while reducing the address translation time by up to 20% on average.</p></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X24004394\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24004394","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

随着基于 NAND 闪存的固态硬盘容量不断增加,设计一种内存效率高的地址转换算法变得至关重要,这种算法能在转换表无法全部加载到控制器 DRAM 中时提供高性能。现有的闪存转换层(FTL)采用基于需求的地址转换,通过利用 I/O 引用的位置性将常用映射信息缓存在 DRAM 中。然而,由于缺乏有关应用详细行为的信息,现有的基于需求的 FTL 经常会出现大量的翻译表遗漏,从而导致性能达不到最优。在本文中,我们提出了一种新的程序上下文辅助闪存转换层(Program context-AssisteD Flash Translation Layer),称为 PADFTL。与以固件形式实现的现有 FTL 不同,PADFTL 与主机级 I/O 分类器垂直集成,为固态硬盘中的 FTL 在管理转换表时做出更好的决策提供有用的提示。主机级 I/O 分类器通过分析程序上下文监控应用程序的独特行为,并将 I/O 模式分为四种类型:(1) 循环;(2) 热;(3) 顺序;(4) 随机,然后通过扩展接口传送到固态硬盘。PADFTL 的 SSD 端模块将控制器 DRAM 划分为四个区域,并将与不同 I/O 模式相关的映射信息隔离到不同的区域。通过采用针对单个区域进行优化的高速缓存管理策略,PADFTL 可以降低整体转换表未命中率。为了评估 PADFTL 的有效性,我们在 Linux 内核中实现了主机级分类器,并在跟踪驱动的 FTL 模拟器中实现了 PADFTL 的 FTL。在我们的实验结果中,与最先进的 FTL 相比,PADFTL 将总体表命中率提高了 16%,同时将地址转换时间平均缩短了 20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Program context-assisted address translation for high-capacity SSDs

As the capacity of NAND flash-based SSDs keeps increasing, it becomes crucial to design a memory-efficient address translation algorithm that offers high performance when a translation table cannot be entirely loaded in a controller DRAM. Existing flash translation layers (FTL) employ demand-based address translation which caches popular mapping information in DRAM by leveraging locality of I/O references. Owing to the lack of information about detailed behaviors of applications, however, existing demand-based FTLs often suffer from many translation-table misses and thus result in sub-optimal performance. In this paper, we propose a new Program context-AssisteD Flash Translation Layer, called PADFTL. Unlike existing FTLs which are implemented as the form of firmware, PADFTL is vertically integrated with a host-level I/O classifier which provides useful hints for an FTL in an SSD to make a better decision in managing a translation table. The host-level I/O classifier monitors unique behaviors of applications by analyzing their program contexts and categorizes I/O patterns into four types, (1) Loop, (2) Hot, (3) Sequential, and (4) Random, which are then delivered to an SSD through extended interfaces. The SSD-side module of PADFTL partitions a controller DRAM into four zones and isolates mapping information associated with different I/O patterns into separate zones. By employing cache management strategies optimized for individual zones, PADFTL can lower the overall translation-table miss ratio. To evaluate the effectiveness of PADFTL, we implement the host-level classifier in the Linux kernel and PADFTL’s FTL in a trace-driven FTL simulator. In our experimental results, compared to the state-of-the-art FTL, PADFTL increases the overall table hit ratio by 16% while reducing the address translation time by up to 20% on average.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
期刊最新文献
Analyzing inference workloads for spatiotemporal modeling An efficient federated learning solution for the artificial intelligence of things Generative adversarial networks to detect intrusion and anomaly in IP flow-based networks Blockchain-based conditional privacy-preserving authentication scheme using PUF for vehicular ad hoc networks UAV-IRS-assisted energy harvesting for edge computing based on deep reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1