铝对海洋硅藻影响的简要回顾。

IF 2.7 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Bulletin of Environmental Contamination and Toxicology Pub Date : 2024-08-23 DOI:10.1007/s00128-024-03939-1
Yingqi Lao, Jie Ma, Ke Pan, Fengyuan Chen, Zhen Zhang
{"title":"铝对海洋硅藻影响的简要回顾。","authors":"Yingqi Lao, Jie Ma, Ke Pan, Fengyuan Chen, Zhen Zhang","doi":"10.1007/s00128-024-03939-1","DOIUrl":null,"url":null,"abstract":"<p><p>Aluminum (Al) is the most abundant metal element in the Earth's crust, yet it is present in trace levels in seawater. Growing evidence suggests potential effects of Al on the biogeochemical cycles of carbon (C) and silicon (Si) in the marine environment. By accumulation, sinking, and deposition, diatoms play a center role in coupling these three elements' biocycles in the oceans. However, it is still a challenge to elucidate the behaviors of diatoms influenced by Al. Our review aims to present the current knowledge of Al biogeochemistry in marine environment and its impact on marine phytoplankton, with a focus on how Al influences diatoms. Previous researches indicate that Al can promote the growth of diatoms, and diatoms have the ability to incorporate Al into their frustules. Given this, we paid particular attention on the interaction between Al and diatom frustules, and the influences of Al on the physiology and ecology of diatoms. Furthermore, it is suggested that Al alters the accumulation of other nutrients such as nitrogen, phosphorus and iron in diatoms; the subsequent responses of diatoms are also discussed. The objective of this review is to address the potential roles of Al in diatoms and offer insights into the possible biogeochemistry implications.</p>","PeriodicalId":501,"journal":{"name":"Bulletin of Environmental Contamination and Toxicology","volume":"113 3","pages":"31"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Brief Review of Effects of Aluminum on Marine Diatoms.\",\"authors\":\"Yingqi Lao, Jie Ma, Ke Pan, Fengyuan Chen, Zhen Zhang\",\"doi\":\"10.1007/s00128-024-03939-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aluminum (Al) is the most abundant metal element in the Earth's crust, yet it is present in trace levels in seawater. Growing evidence suggests potential effects of Al on the biogeochemical cycles of carbon (C) and silicon (Si) in the marine environment. By accumulation, sinking, and deposition, diatoms play a center role in coupling these three elements' biocycles in the oceans. However, it is still a challenge to elucidate the behaviors of diatoms influenced by Al. Our review aims to present the current knowledge of Al biogeochemistry in marine environment and its impact on marine phytoplankton, with a focus on how Al influences diatoms. Previous researches indicate that Al can promote the growth of diatoms, and diatoms have the ability to incorporate Al into their frustules. Given this, we paid particular attention on the interaction between Al and diatom frustules, and the influences of Al on the physiology and ecology of diatoms. Furthermore, it is suggested that Al alters the accumulation of other nutrients such as nitrogen, phosphorus and iron in diatoms; the subsequent responses of diatoms are also discussed. The objective of this review is to address the potential roles of Al in diatoms and offer insights into the possible biogeochemistry implications.</p>\",\"PeriodicalId\":501,\"journal\":{\"name\":\"Bulletin of Environmental Contamination and Toxicology\",\"volume\":\"113 3\",\"pages\":\"31\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Environmental Contamination and Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00128-024-03939-1\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00128-024-03939-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

铝(Al)是地壳中含量最高的金属元素,但在海水中的含量却很微量。越来越多的证据表明,铝对海洋环境中碳(C)和硅(Si)的生物地球化学循环有潜在影响。通过积累、下沉和沉积,硅藻在海洋中这三种元素的生物循环中发挥着核心作用。然而,阐明硅藻受 Al 影响的行为仍是一项挑战。我们的综述旨在介绍目前有关海洋环境中铝的生物地球化学及其对海洋浮游植物影响的知识,重点是铝如何影响硅藻。以往的研究表明,铝能促进硅藻的生长,硅藻有能力将铝吸收到其壳体中。有鉴于此,我们特别关注铝与硅藻壳的相互作用,以及铝对硅藻生理和生态的影响。此外,研究还提出,铝会改变硅藻体内其他营养物质(如氮、磷和铁)的积累,并讨论了硅藻随后的反应。本综述旨在探讨铝在硅藻中的潜在作用,并深入探讨可能对生物地球化学产生的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Brief Review of Effects of Aluminum on Marine Diatoms.

Aluminum (Al) is the most abundant metal element in the Earth's crust, yet it is present in trace levels in seawater. Growing evidence suggests potential effects of Al on the biogeochemical cycles of carbon (C) and silicon (Si) in the marine environment. By accumulation, sinking, and deposition, diatoms play a center role in coupling these three elements' biocycles in the oceans. However, it is still a challenge to elucidate the behaviors of diatoms influenced by Al. Our review aims to present the current knowledge of Al biogeochemistry in marine environment and its impact on marine phytoplankton, with a focus on how Al influences diatoms. Previous researches indicate that Al can promote the growth of diatoms, and diatoms have the ability to incorporate Al into their frustules. Given this, we paid particular attention on the interaction between Al and diatom frustules, and the influences of Al on the physiology and ecology of diatoms. Furthermore, it is suggested that Al alters the accumulation of other nutrients such as nitrogen, phosphorus and iron in diatoms; the subsequent responses of diatoms are also discussed. The objective of this review is to address the potential roles of Al in diatoms and offer insights into the possible biogeochemistry implications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
3.70%
发文量
230
审稿时长
1.7 months
期刊介绍: The Bulletin of Environmental Contamination and Toxicology(BECT) is a peer-reviewed journal that offers rapid review and publication. Accepted submissions will be presented as clear, concise reports of current research for a readership concerned with environmental contamination and toxicology. Scientific quality and clarity are paramount.
期刊最新文献
Correction: Toxic Effects of Biogenic and Synthesized Silver Nanoparticles on Sea Urchin Echinometra lucunter Embryos. Photodegradation of Neonicotinoid Insecticides Nitenpyram, Thiacloprid, and Acetamiprid in Water and Soil Environments. Levels and Classification of Microplastics and Their Impact on the Wellbeing of Selected Commercially Important Fish Species in Kisumu Bay, Lake Victoria. Correction: Exposure Assessment of Pesticides in Surface Waters of Ontario, Canada Reveals Low Probability of Exceeding Acute Regulatory Thresholds. Determination of the Suitable Biomonitors to be used in Monitoring the Change for Reducing the Concentration of V in Areas with High-Level of Air Pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1