更好地预测鲁尔锁连接密封性能的新型组合方法

Julien Singer, Lucile Gontard, Yetirajendra Daroji, Jimmy Voniez, Nestor Rodriguez, Diana Koschel, William Leverd
{"title":"更好地预测鲁尔锁连接密封性能的新型组合方法","authors":"Julien Singer, Lucile Gontard, Yetirajendra Daroji, Jimmy Voniez, Nestor Rodriguez, Diana Koschel, William Leverd","doi":"10.5731/pdajpst.2024.012966","DOIUrl":null,"url":null,"abstract":"<p><p>Luer systems, for example Luer-needle hub with syringe's Luer cone tip and its Luer lock Adapter, are common interface on medical devices. One of the key questions in this application is about the safety guaranty and dose accuracy. It is then crucial to study the sealing between these elements. In this study we combine the use of Finite Element Analysis (FEA) and Multiscale Contact Mechanics (MCM) to analyze the connectivity and sealing performance of a glass syringe and a plastic needle Luer hub.This methodology has been applied before to the contact between glass and rubber and this is the first time that it is used for the contact between glass and plastic materials. The use of FEA allows to calculate the contact pressures and the nominal area of contact. The surface topographies of the two surfaces were measured, over a wide wavelength range (mm to nm). Subsequently, the air and liquid interfacial flow (leakage) is calculated using Persson's MCM theory which considers the roughness and elasto-plasticity of the interfacial surfaces. The theoretical predictions are compared to experimental leak measurements by pressure decay method. Further analysis is conducted, evidencing the key features that are responsible for a good sealing.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":"78 4","pages":"514-515"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Combined Approach to Better Predict Sealing Performance of Luer Lock Connectivity.\",\"authors\":\"Julien Singer, Lucile Gontard, Yetirajendra Daroji, Jimmy Voniez, Nestor Rodriguez, Diana Koschel, William Leverd\",\"doi\":\"10.5731/pdajpst.2024.012966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Luer systems, for example Luer-needle hub with syringe's Luer cone tip and its Luer lock Adapter, are common interface on medical devices. One of the key questions in this application is about the safety guaranty and dose accuracy. It is then crucial to study the sealing between these elements. In this study we combine the use of Finite Element Analysis (FEA) and Multiscale Contact Mechanics (MCM) to analyze the connectivity and sealing performance of a glass syringe and a plastic needle Luer hub.This methodology has been applied before to the contact between glass and rubber and this is the first time that it is used for the contact between glass and plastic materials. The use of FEA allows to calculate the contact pressures and the nominal area of contact. The surface topographies of the two surfaces were measured, over a wide wavelength range (mm to nm). Subsequently, the air and liquid interfacial flow (leakage) is calculated using Persson's MCM theory which considers the roughness and elasto-plasticity of the interfacial surfaces. The theoretical predictions are compared to experimental leak measurements by pressure decay method. Further analysis is conducted, evidencing the key features that are responsible for a good sealing.</p>\",\"PeriodicalId\":19986,\"journal\":{\"name\":\"PDA Journal of Pharmaceutical Science and Technology\",\"volume\":\"78 4\",\"pages\":\"514-515\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PDA Journal of Pharmaceutical Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5731/pdajpst.2024.012966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PDA Journal of Pharmaceutical Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5731/pdajpst.2024.012966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

Luer 系统,例如带有注射器 Luer 锥形针头及其 Luer 锁适配器的 Luer 针毂,是医疗设备上常见的接口。这种应用的关键问题之一是安全保证和剂量准确性。因此,研究这些元件之间的密封性至关重要。在这项研究中,我们结合使用有限元分析 (FEA) 和多尺度接触力学 (MCM),分析了玻璃注射器和塑料针头鲁尔毂的连接和密封性能。利用有限元分析可以计算出接触压力和额定接触面积。在宽波长范围(毫米至纳米)内测量了两个表面的表面形貌。随后,利用考虑了界面表面粗糙度和弹塑性的佩尔松 MCM 理论计算了空气和液体的界面流动(泄漏)。理论预测结果与通过压力衰减法进行的实验泄漏测量结果进行了比较。通过进一步的分析,证明了良好密封的关键特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Combined Approach to Better Predict Sealing Performance of Luer Lock Connectivity.

Luer systems, for example Luer-needle hub with syringe's Luer cone tip and its Luer lock Adapter, are common interface on medical devices. One of the key questions in this application is about the safety guaranty and dose accuracy. It is then crucial to study the sealing between these elements. In this study we combine the use of Finite Element Analysis (FEA) and Multiscale Contact Mechanics (MCM) to analyze the connectivity and sealing performance of a glass syringe and a plastic needle Luer hub.This methodology has been applied before to the contact between glass and rubber and this is the first time that it is used for the contact between glass and plastic materials. The use of FEA allows to calculate the contact pressures and the nominal area of contact. The surface topographies of the two surfaces were measured, over a wide wavelength range (mm to nm). Subsequently, the air and liquid interfacial flow (leakage) is calculated using Persson's MCM theory which considers the roughness and elasto-plasticity of the interfacial surfaces. The theoretical predictions are compared to experimental leak measurements by pressure decay method. Further analysis is conducted, evidencing the key features that are responsible for a good sealing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
34
期刊最新文献
A Risk Assessment and Risk Based Approach Review of Pre-use/Post Sterilization Integrity Testing (PUPSIT). Case Study: Visual Inspection of Topical Ophthalmic Formulations Packaged in Opaque and Semi-Transparent Containers: Working towards alignment with USP<790> Visible Inspection of Injections. Addressing Medical Device Extractables and Leachables via Non-Target Analysis (NTA); The Analytical Evaluation Threshold (AET) and Quantitation. Definition of particle visibility threshold in parenteral drug products - towards standardization of visual inspection operator qualification. Recommendations for Artificial Intelligence Application in Continued Process Verification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1