{"title":"免疫力对冠心病风险的影响:一项多组学研究的启示。","authors":"Rutao Bian, Dongyu Li, Xuegong Xu, Li Zhang","doi":"10.1093/postmj/qgae105","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Immune inflammation is intricately associated with coronary artery disease (CAD) progression, necessitating the pursuit of more efficacious therapeutic strategies. This study aimed to uncover potential therapeutic targets for CAD and myocardial infarction (MI) by elucidating the causal connection between regulatory immune-related genes (RIRGs) and these disorders.</p><p><strong>Methodology: </strong>We performed summary data-based Mendelian randomization analysis to assess the therapeutic targets linked to expression quantitative trait loci and methylation quantitative trait loci of RIRGs in relation to CAD and MI. Independent validation cohorts and datasets from coronary artery and left ventricular heart tissue were analyzed. To strengthen causal inference, colocalization analysis and PhenoScanner phenotype scans were employed.</p><p><strong>Results: </strong>Utilizing multiomics integration, we pinpointed EIF2B2, FCHO1, and DDT as CAD risk genes. Notably, EIF2B2 and FCHO1 displayed significant associations with MI. High EIF2B2 expression, regulated by cg16144293, heightened CAD and MI risk at rs175438. In contrast, enhanced FCHO1 expression, modulated by cg18329931, reduced CAD and MI risk at rs13382133. DDT upregulation influenced by cg11060661 and cg09664220 was associated with decreased CAD risk at rs5760120. Colocalization analysis firmly established these relationships.</p><p><strong>Conclusion: </strong>EIF2B2, FCHO1, and DDT represent risk loci for CAD progression within RIRGs. Our identification of these genes enhances understanding of CAD pathogenesis and directs future drug development efforts.</p>","PeriodicalId":20374,"journal":{"name":"Postgraduate Medical Journal","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of immunity on the risk of coronary artery disease: insights from a multiomics study.\",\"authors\":\"Rutao Bian, Dongyu Li, Xuegong Xu, Li Zhang\",\"doi\":\"10.1093/postmj/qgae105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Immune inflammation is intricately associated with coronary artery disease (CAD) progression, necessitating the pursuit of more efficacious therapeutic strategies. This study aimed to uncover potential therapeutic targets for CAD and myocardial infarction (MI) by elucidating the causal connection between regulatory immune-related genes (RIRGs) and these disorders.</p><p><strong>Methodology: </strong>We performed summary data-based Mendelian randomization analysis to assess the therapeutic targets linked to expression quantitative trait loci and methylation quantitative trait loci of RIRGs in relation to CAD and MI. Independent validation cohorts and datasets from coronary artery and left ventricular heart tissue were analyzed. To strengthen causal inference, colocalization analysis and PhenoScanner phenotype scans were employed.</p><p><strong>Results: </strong>Utilizing multiomics integration, we pinpointed EIF2B2, FCHO1, and DDT as CAD risk genes. Notably, EIF2B2 and FCHO1 displayed significant associations with MI. High EIF2B2 expression, regulated by cg16144293, heightened CAD and MI risk at rs175438. In contrast, enhanced FCHO1 expression, modulated by cg18329931, reduced CAD and MI risk at rs13382133. DDT upregulation influenced by cg11060661 and cg09664220 was associated with decreased CAD risk at rs5760120. Colocalization analysis firmly established these relationships.</p><p><strong>Conclusion: </strong>EIF2B2, FCHO1, and DDT represent risk loci for CAD progression within RIRGs. Our identification of these genes enhances understanding of CAD pathogenesis and directs future drug development efforts.</p>\",\"PeriodicalId\":20374,\"journal\":{\"name\":\"Postgraduate Medical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Postgraduate Medical Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/postmj/qgae105\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postgraduate Medical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/postmj/qgae105","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
The impact of immunity on the risk of coronary artery disease: insights from a multiomics study.
Background: Immune inflammation is intricately associated with coronary artery disease (CAD) progression, necessitating the pursuit of more efficacious therapeutic strategies. This study aimed to uncover potential therapeutic targets for CAD and myocardial infarction (MI) by elucidating the causal connection between regulatory immune-related genes (RIRGs) and these disorders.
Methodology: We performed summary data-based Mendelian randomization analysis to assess the therapeutic targets linked to expression quantitative trait loci and methylation quantitative trait loci of RIRGs in relation to CAD and MI. Independent validation cohorts and datasets from coronary artery and left ventricular heart tissue were analyzed. To strengthen causal inference, colocalization analysis and PhenoScanner phenotype scans were employed.
Results: Utilizing multiomics integration, we pinpointed EIF2B2, FCHO1, and DDT as CAD risk genes. Notably, EIF2B2 and FCHO1 displayed significant associations with MI. High EIF2B2 expression, regulated by cg16144293, heightened CAD and MI risk at rs175438. In contrast, enhanced FCHO1 expression, modulated by cg18329931, reduced CAD and MI risk at rs13382133. DDT upregulation influenced by cg11060661 and cg09664220 was associated with decreased CAD risk at rs5760120. Colocalization analysis firmly established these relationships.
Conclusion: EIF2B2, FCHO1, and DDT represent risk loci for CAD progression within RIRGs. Our identification of these genes enhances understanding of CAD pathogenesis and directs future drug development efforts.
期刊介绍:
Postgraduate Medical Journal is a peer reviewed journal published on behalf of the Fellowship of Postgraduate Medicine. The journal aims to support junior doctors and their teachers and contribute to the continuing professional development of all doctors by publishing papers on a wide range of topics relevant to the practicing clinician and teacher. Papers published in PMJ include those that focus on core competencies; that describe current practice and new developments in all branches of medicine; that describe relevance and impact of translational research on clinical practice; that provide background relevant to examinations; and papers on medical education and medical education research. PMJ supports CPD by providing the opportunity for doctors to publish many types of articles including original clinical research; reviews; quality improvement reports; editorials, and correspondence on clinical matters.